Chen, WenxiongD’Ambrosio, LorenzoLi, YanElsevier LtdNonlinear Analysis: Theory, Methods & ApplicationsW. Chen, L. D'Ambrosio, and Y. Li. Some Liouville theorems for the fractional Laplacian. Nonlinear Anal., 12
Wenxiong Chen, Lorenzo D'Ambrosio, and Yan Li, Some Liouville theorems for the fractional Laplacian, Non- linear Anal. 121 (2015), 370-381, DOI 10.1016/j.na.2014.11.003. MR3348929W. Chen, L. Di-Ambrosio, Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinea...
Wenxiong ChenYanqin FangRay YangElsevier Inc.Advances in MathematicsW. Chen, Y. Fang, R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. in Math. 274 (2014) 167-198.W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on ...
Wenxiong ChenCongming LiYan LiW.Chen, C.Li, Y.Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308(2017), 404-437.A direct method of moving planes for the fractional Laplacian. Chen,W,Li,C,Li,Y. Advances in Mathematics . 2017...
Yang, Semilinear equations involving the frac- tional Laplacian on domains, arXiv preprint arXiv:1309.7499 (2013).Chen Wenxiong, Fang Yanqin, Yang R. Semilinear equations involving the fractional Laplacian on domains. 2013, arXiv: 1309.7499
Wenxiong ChenCongming LiYan LiAcademic PressW. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Mathe- matics 308 (2017), 404-437.W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math.,...
Chen, X. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst. - A, 36 (2016), no. 2, 1125-1141. School of Mathematics and Systems Science, Beihang University (BUAA), Beijing 100083,...
Wenxiong Chen a bCongming Li c dAdvances in MathematicsW. Chen and C. Li, "Maximum principles for the fractional p-Laplacian and symmetry of solutions," Analysis of PDEs, 19 pages, 2017, https://arxiv.org/abs/1705.04891.Chen, W.X.; Li, C.M. Maximum principles for the fractional p-...
The fractional p-LaplacianNarrow region principleSliding methodsMonotonicity of solutionsIn this paper, we develop a sliding method for the fractional p-Laplacian. We first obtain the key ingredient needed in the sliding method in a bounded domain–the narrow region principle. Then using nonlinear ...