The Art of Linear Algebra– Graphic Notes on “Linear Algebra for Everyone” –Kenji Hiranabe∗with the kindest help of Gilbert Strang†translator: Kefang Liu‡September 1, 2021/updated July 12, 2023Abstract我尝试为 Gilbert Strang 在书籍“Linear Algebra for Everyone”中介绍的矩阵的重要概念...
【线性代数的艺术可视化图释中文版】'The-Art-of-Linear-Algebra - Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"' Kefang Liu GitHub: github.com/kf-liu/The-Art-of-Linear-Algebra-zh-CN #开源# #机器学习# û收藏 120 7 ñ114 评论 o p 同时转发到...
The Art of Linear Algebra 线性代数的艺术 这本开源书籍是 Kenji Hiranabe 先生为 MIT 教授 Gilbert Strang 的Linear Algebra for Everyone 一书撰写的图文注释。它作为唯二的笔记之一和唯一的Interesting Link被放在原著官网的首页推荐,也获得了教授的亲笔推荐序。 image.png 来几张图感受一下就知道了! image.png...
海边的贝壳林IP属地: 浙江 0.1262023.08.01 09:59:16字数 46阅读 7,364 https://github.com/kf-liu/The-Art-of-Linear-Algebra-zh-CN/blob/main/The-Art-of-Linear-Algebra-zh-CN.pdf ©著作权归作者所有,转载或内容合作请联系作者 1人点赞
百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固,支持教育网加速,支持手机端。注册使用百度网盘即可享受免费存储空间
English | 中文(简体) The-Art-of-Linear-Algebra Graphic notes on Gilbert Strang's "Linear Algebra for Everyone" The output file is "The-Art-of-Linear-Algebra.pdf" Japanese version "The-Art-of-Linear-Algebra-j.pdf" Chinese version "The-Art-of-Linear-Algebra-zh-CN.pdf" and "kf-liu/The...
出版年:2010 页数:304 定价:USD 68.00 装帧:Hardcover ISBN:9780801897559 豆瓣评分 评价人数不足 评价: 写笔记 写书评 加入购书单 分享到 推荐 内容简介· ··· A monumental accomplishment in the history of non-Western mathematics, The Chinese Roots of Linear Algebra explains the fundamentally visual ...
最近Github上的开源线性代数图解火遍全网! 仅仅十二张图片,让Gilbert Strang教授为其作序,内容十分精悍! 内容Content1.理解矩阵一一4个视角2.向量乘以向量一一2个视角3矩阵乘以向量一一2个视角4.矩阵乘以矩阵…
English | 中文(简体) The-Art-of-Linear-Algebra Graphic notes on Gilbert Strang's "Linear Algebra for Everyone" The output file is "The-Art-of-Linear-Algebra.pdf" Japanese version "The-Art-of-Linear-Algebra-j.pdf" Chinese version "The-Art-of-Linear-Algebra-zh-CN.pdf" and "kf-liu/The...
The pictures are an excellent way to show the algebra. We can think of matrix multiplications by row $\bm{\cdot}$ column dot products, but that is not all -- it is ``linear combinations" and ``rank 1 matrices" that complete the algebra and the art. I am very grateful to ...