TF-IDF(词频-逆向文件频率): 表示的词频和逆向文件频率的乘积. 比如: 假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF = T/N; 并且‘明星’这个词,在W份文件中出现,而总共有X份文件,那么 IDF = log(X/W) ; 而: TF-IDF = TF * IDF = T/N * log(X/W); 我们发现,‘...
TFIDF不仅统计出现的次数,更反应的是每个字符在整个文档库中的权重 2.代码 from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer <1>词频统计 s = ['我 爱你', '我 恨你恨你'] --- 举例 tf = CountVectorizer(token_pattern='[\u4e00-\u9fa5]+') --- token_pattern='[\u4e00...
TF, IDF和TF-IDF 在相似文本的推荐中,可以用TF-IDF来衡量文章之间的相似性。 一、TF(Term Frequency) TF的含义很明显,就是词出现的频率。 公式: 在算文本相似性的时候,可以采用这个思路,如果两篇文章高频词很相似,那么就可以认定两片文章很相似。 二、IDF(Inverse Document Frequency) IDF为逆文档频率。 公式...
##TF-IDF TF(词频): 假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF = T/N; 所以表示为: 某一个词在某一个文件中出现的频率. TF-IDF(词频-逆向文件频率): 表示的词频和逆向文件频率的乘积. 比如: 假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF ...
某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的tf-idf。因此,tf-idf倾向于过滤掉常见的词语,保留重要的词语。 2 例子 有很多不同的数学公式可以用来计算tf-idf。这边的例子以上述的数学公式来计算。词频(tf)是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词...
3升级版关键词抽取-基于TF-IDF 前面介绍的方法主要考虑的是当前文档内,词语出现的频数。这样会导致一些频数比较低,实际上信息含量比较高的词语,如“言承旭”,被忽略掉。我们可以用一些策略,给词语加权,使得当前文档内TF较低、实际信息量比较大的词语得以排名靠前,成为关键词。 3.1逆文档频率 假如一个词语在所有的文...
TF-IDF的取值由TF和IDF的乘积得到。TF-IDF越高,表示该词在当前文档中的重要程度高,并且在整个文档集合中的普遍重要程度低。相对地,TF-IDF越低,表示该词在当前文档中的重要程度低,并且在整个文档集合中的普遍重要程度高。 TF-IDF常用于信息检索中的关键词提取、文档相似度计算等场景。在关键词提取中,TF-IDF可以...
TF-IDF基本概念和原理 TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解
##TF-IDF TF(词频): 假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF = T/N; 所以表示为: 某一个词在某一个文件中出现的频率. TF-IDF(词频-逆向文件频率): 表示的词频和逆向文件频率的乘积. 比如: 假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF ...
TF-IDF(x) = TF(x) * IDF(x) 其中TF(x)指词x在当前文本中的词频。 TF-IDF是非常常用的文本挖掘预处理基本步骤,但是如果预处理中使用了Hash Trick,则一般就无法使用TF-IDF了,因为Hash Trick后我们已经无法得到哈希后的各特征的IDF的值。使用了IF-IDF...