首先,引入我们需要的类,创建一个 HashingTF 实例,传入维度参数 dim 。默认特征维度是20 (或者接近一百万),因此我们选择2 18 (或者26 000),因为使用50 000个单词应该不会产生很多的哈希冲突,而较少的维度占用内存更少并且展示起来更方便。HashingTF 的 transform 函数把每个输入文档(即词项的序列)映射到一个MLlib...
new_keyword_vector 和 tfidf_matrix 的余弦相似度 可以看出1最相似,0其次,2最不像。 为了让排序更方便,我们把它转换为DataFrame格式,现在我们的余弦相似度矩阵如下图: 如果不需要排序等操作,到这里就可以停止了 cosine_similarities=pd.DataFrame(cosine_similarities.T,columns=["score"]) 找出前k个文本的index...
首先,什么是文本相似?举个例子,有两句话“今天的天气很好”和“今天的天气不错”。这两句话意思差不多,所以我们认为它们是相似的。然后有另外一句话“明天要下雨”。很显然,最后这句话和前两句不那么相似了。为了评价文本(这里就是句子)之间的相似程度,我们引入了这个文本相似度。 接下来我们要做的就是量化这个相...
三角形越扁平,证明两个个体间的距离越小,相似度越大;反之,相似度越小。但是,文本的相似度计算只是针对字面量来计算的,也就是说只是针对语句的字符是否相同,而不考虑它的语义,那是另外一个研究方向来着。比如,句子1:你真好看:。句子2:你真难看。这两句话相似度75%,但是它们的语义相差十万八千里,可以说是完全...
图2.2.1-1中文文本相似度算法预处理流程 2.2.2文本特征项选择与加权 过滤掉常用副词、助词等频度高的词之后,根据剩下词的频度确定若干关键词。频度计算参照TF公式。 加权是针对每个关键词对文本特征的体现效果大小不同而设置的机制,权值计算参照IDF公式。
使用tfidf余弦相似度计算短句文本相似度比对 要使用TF-IDF和余弦相似度来计算短句文本的相似度,您可以按照以下步骤进行操作: 1.预处理数据: 将文本转换为小写。 删除停用词(例如,“的”,“和”等常用词)。 删除标点符号。 将文本分解为单词或n-grams。 2.计算TF-IDF: 计算每个单词的词频(TF)。 计算每个单词...
在计算文本相似度时,可以将每个文本表示为一个向量,向量的每个维度对应一个词。向量的值可以通过计算对应词的TF-IDF得到。然后可以使用向量之间的余弦相似度来度量文本之间的相似度。余弦相似度的计算公式为:cosine_similarity = (A·B) / (||A|| * ||B||),其中A和B分别表示两个文本的向量表示,A·B表示两...
文本相似度分析结果 (15)分析结果:《至此终年》与《徐徐诱之》的相似度为0.75%,与《他站在时光深处》的相似度为4.15%。 【注】 ①密集向量: 密集向量的值是一个普通的Double数组,如:向量(1.0,0.0,1.0,3.0)用密集格式表示为[1.0,0.0,1.0,3.0]。
这个系列打算以文本相似度为切入点,逐步介绍一些文本分析的干货,包括分词、词频、词频向量、TF-IDF、文本匹配等等。 第一篇中,介绍了文本相似度是干什么的; 第二篇,介绍了如何量化两个文本,如何计算余弦相似度,穿插介绍了分词、词频、向量夹角余弦的概念。
Simhash是一种局部敏感哈希方法,将高维数据降维到具有固定长度的二进制串(Simhash签名),再通过对二进制串进行相似性计算来比较文本的相似度。这种方法在高维数据空间具有优异的计算性能。但是,该方法未考虑科技项目文本中词项的重要性,存在准确率不高的问题。