词频-逆文档频率(TF-IDF)是Salton于1988年提出的一种权重计算方法,用于判断字词对于一个文档集合的重要性。在介绍TF-IDF之前,需要先对词频(TF)、逆文档频率(IDF)分别进行介绍。 1 词频(Term Frequency, TF) 词频(Term Frequency, TF)即词的频率,表示词条项在一个文档中出现的频率,计算公式如下: 其中, 表示
本书分为3部分:第一部分介绍NLP基础,包括分词、TF-IDF向量化以及从词频向量到语义向量的转换;第二部分讲述深度学习,包含神经网络、词向量、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)网络、序列到序列建模和注意力机制等基本的深度学习模型和方法;第三部分介绍实战方面的内容,包括信息提取、问答系统、...