这里将主要介绍我在比赛中用到的几个模型,从理论到代码实现进行总结,其中涉及CHI选择特征词,TFIDF计算权重,朴素贝叶斯、决策树、SVM、XGBoost等算法, 实现传统的文本分类并取得了不错的效果。 此外,还是用cnn卷积神经网络实现了中文的文本分类,效果要优于上述算法。 完整源码(包括冠军源码) 获取方式: 关注微信公众号...
这里将主要介绍我在比赛中用到的几个模型,从理论到代码实现进行总结,其中涉及CHI选择特征词,TFIDF计算权重,朴素贝叶斯、决策树、SVM、XGBoost等算法, 实现传统的文本分类并取得了不错的效果。 此外,还是用cnn卷积神经网络实现了中文的文本分类,效果要优于上述算法。 完整源码(包括冠军源码) 获取方式: 关注微信公众号...
Wi 表示第 i 个特征词的权重,TFi(t,d) 表示词 t 在文档 d 中的出现频率,N 表示总的文档数,DF(t) 表示包含 t 的文档数。用 TF-IDF 算法来计算特征词的权重值是表示当一个词在这篇文档中出现的频率越高,同时在其他文档中出现的次数越少,则表明该词对于表示这篇文档的区分能力越强,所以其权重值就应该...
Wi 表示第 i 个特征词的权重,TFi(t,d) 表示词 t 在文档 d 中的出现频率,N 表示总的文档数,DF(t) 表示包含 t 的文档数。用 TF-IDF 算法来计算特征词的权重值是表示当一个词在这篇文档中出现的频率越高,同时在其他文档中出现的次数越少,则表明该词对于表示这篇文档的区分能力越强,所以其权重值就应该...
word2vec CNN 文本分类 文本分类tfidf,因为工作中需要用到计算词语权重,进而作词与选择,思考了一下tf/idf。首先还是简单介绍一下tf/idf。这个概念最开始用于信息检索。tf表示termfrequency,通常是指词频;idf表示inverseddocumentfrequency,是文档频率的倒数。计算方式
本文提出一种基于注意力机制与改进TF-IDF的推荐算法AMITI。将注意力机制引入卷积神经网络(Convolutional Neural Network,CNN)中,在卷积层前加入注意力网络,对经过预处理的项目文本信息进行重新赋权。将多层全连接神经网络学习到的用户特征向量和项目特征向量输入到第2层注意力机制中,使多层感知机(Multilayer Perceptron,MLP...
该模型首先利用特征项在类内,类间的分布关系和位置信息改进TF-IDF算法,突出特征项的重要性,并结合Word2vec工具训练的词向量对文本进行表示;然后使用ABLCNN提取文本特征,ABLCNN结合了注意力机制,长短期记忆网络和卷积神经网络的优点,既可以有重点地提取文本的上下文语义特征,又兼顾了局部语义特征;最后,将特征向量通过...
TF-IDF是TermFrequency-Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。 前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。在“以计数特征文本向量化的不...
6、关系抽取PCNN中的CNN是几层? 回答的也就60%,惭愧,好多都忘了。不过还是喜欢面试,能发现很多不会的细节。接下来着重2和3还有维特比吧。补好了再战 文本相似度(tf-idf 和 bm25的算法讲解) : tf: sim = tf*idf BM25算法代码: 25 公式中包含3 个自由调节参数 ,除了调节因子 b 外 ,还有针对词频的...
TF-IDF 零:寒暄寒暄 昨天看了一天的CNN,结果被深度学习的深度给深深地深刻地深埋了(是叹服了),今天想换换脑子,去综结一下之前学习的《数学之美》里面介绍的算法和数学,下一篇再搞几篇深度学习的学习笔记。 一:TF-IDF简介 这个是用来提取文章或者网页关键字的算法,我们每一篇文章或者,都是有核心讨论主题,因此...