提取一组胶囊,利用动态滤波器得到pose和a(相比于之前的胶囊,每个胶囊代表一个实体,原始的投票机制只会相应的降低某些低层胶囊的投票权重,但是没有办法找到两种模式下的一致性) 从相似性的角度出发,新的路由机制可以发现某些实体之间的关联和相似性,然后生成统一的visual-textual胶囊。 协议路由机制: 网格胶囊Cv(视觉实...
The model uses Transformer with different granularity to extract hierarchical text features, and uses the text capsule network to model the relationship between the local text features of emotion cause pair and the overall causal relationship. We also utilize a filter mechanism to alleviate the ...
Free capsule textboxes for PowerPoint and Google Slides. A series of pill-shape textboxes with colorful headers. Editable graphics.
文本分类资源汇总,包括深度学习文本分类模型,如SpanBERT、ALBERT、RoBerta、Xlnet、MT-DNN、BERT、TextGCN、MGAN、TextCapsule、SGNN、SGM、LEAM、ULMFiT、DGCNN、ELMo、RAM、DeepMoji、IAN、DPCNN、TopicRNN、LSTMN 、Multi-Task、HAN、CharCNN、Tree-LSTM、DAN、TextRCN
andyweizhao/capsule_text_classificationgithub.com/andyweizhao/capsule_text_classification 一、概述 最近因为业务用到分类模型,所以调研了一些常见的分类模型以及论文。感觉在分类这个领域似乎文章并不是特别的多,特别是那种比较实在可以在实际业务中落地的。可能是分类大家做的都太多了,并且因为BERT等大规模预训练...
CapsuleTextClassification.zipLo**pt 在2023-12-29 12:22:40 上传8.56 KB capsule 利用keras搭建的胶囊网络(capsule network文本分类模型,包含RNN、CNN、HAN等,其中keras_utils包含了capsule层和attention层的keras实现官网网址 演示地址 授权方式: 界面语言: 平台环境: 点赞(0) 踩踩(0) 反馈 所需:1 积分 ...
In order to better represent the entity-related information expressed in the context of clinical text, we design a novel Capsule-LSTM network that is able to combine the great expressivity of capsule network with the sequential modeling capability of LSTM network. Experiments on 2014 i2b2 dataset ...
label classify, or sentence classify, long or short),字词句向量嵌入层(embeddings)和网络层(graph)构建基类,FastText,TextCNN,CharCNN,TextRNN, RCNN, DCNN, DPCNN, VDCNN, CRNN, Bert, Xlnet, Albert, Attention, DeepMoji, HAN, 胶囊网络-CapsuleNet, Transformer-encode, Seq2seq, SWEM, LEAM, TextGCN...
No code implementations yet. Submityour code now Tasks Edit AddRemove Datasets Edit SSTSST-2 Results from the Paper Edit AddRemove Submitresults from this paperto get state-of-the-art GitHub badges and help the community compare results to other papers....
Dynamically Route Hierarchical Structure Representation to Attentive Capsule for Text Classification 来自 ResearchGate 喜欢 0 阅读量: 69 作者:W Zheng,Z Zheng,H Wan,C Chen 摘要: Representation learning and feature aggregation are usually the two key intermediate steps in natural language processing. ...