GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
A Survey on Text-to-Video Generation/Synthesis. Contribute to jianzhnie/awesome-text-to-video development by creating an account on GitHub.
代码地址:GitHub - THUDM/CogVideo: Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023) 没有跑过这个repo,只跑了一下他们的vae,效果非常好,目前vae的开源最佳吧。 论文中列出来的贡献点: 开源了一个高质量的VAE,它用了因果卷积和KL来重训了一个3D VAE,3D的VAE在去抖去闪烁上面效果...
ControlVideo,改编自 ControlNet,利用输入运动序列的粗略结构一致性,并引入了三个模块来改进视频生成。首先,为了确保帧间外观一致性,ControlVideo 在自注意模块中添加了完全跨帧交互。其次,为了减轻闪烁效应,它引入了一个交替帧平滑器,它在交替帧上使用帧插值。最后,为了高效生成长视频,它利用分层采样器单独合成每个...
GitHub - THUDM/CogVideo: Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023) - THUDM/CogVideo违规链接举报 立即访问 相似资源Ai一键万字论文 笔灵AI写作-ai智能写作-在线AI写作生成器 DeepSeek-R1插件 AI...
依托于飞桨框架和 PaddleNLP 自然语言处理开发库,PPDiffusers 提供了超过50种 SOTA 扩散模型 Pipelines 集合,支持文图生成(Text-to-Image Generation)、文本引导的图像编辑(Text-Guided Image Inpainting)、文本引导的图像变换(Image-to-Image Text-Guided Generation)、文本条件视频生成(Text-to-Video Generation...
A team of AI researchers at Google Research has developed a next-generation AI-based text-to-video generator called Lumiere. The group has published a paper describing their efforts on the arXiv preprint server.
依托于飞桨框架和 PaddleNLP 自然语言处理开发库,PPDiffusers 提供了超过50种 SOTA 扩散模型 Pipelines 集合,支持文图生成(Text-to-Image Generation)、文本引导的图像编辑(Text-Guided Image Inpainting)、文本引导的图像变换(Image-to-Image Text-Guided Generation)、文本条件视频生成(Text-to-Video Generation)、超...
The generation of natural language descriptions for a video has been reported by many researchers till now. But, it is still the most interesting research topic among the researchers due to the emerging interdisciplinary problem of Computer Vision (CV), Natural Language Processing (NLP) and Deep ...
To replicate the success of text-to-image (T2I) generation, recent works employ large-scale video datasets to train a text-to-video (T2V) generator. Despite their promising results, such paradigm is computationally expensive. In this work, we propose a new T2V generation setting—One-Shot ...