Stable Diffusion模型是一种基于扩散模型的生成模型,它通过模拟物理扩散过程来生成高质量的图像。该模型的核心思想是将图像生成过程看作是一个扩散过程,通过逐步添加噪声并去除噪声来生成图像。Stable Diffusion模型具有稳定的训练过程和良好的生成效果,因此在文生图生成领域具有广泛的应用前景。 使用Keras实现Stable Diffusion...
Stable Diffusion API 的文生图(Text to Image)端点允许你写正面提示词和负面提示词,正面提示词是针对你希望在图像中看到的内容,负面提示词是通过列出你不希望在生成的图像中看到的内容来完善你的描述。本文来介绍一下 Stable Diffusion API 中文生图(Text to Image)
自2022年Stable Diffusion和ChatGPT诞生以来,扩散模型(diffusion models)和大语言模型(Large Language Models, LLMs)就逐渐成为计算机视觉(CV)和自然语言处理(NLP)两大深度学习主流社区的研究焦点。一方面,在以CLIP为代表的多模态学习迅猛发展之下,加上诸如LAION的大规模图像-文本对训练数据加持下,diffusion models重新定...
Stable Diffusion的发布是一个重要转折点。它吸引了大量用户,因为它不仅免费,而且生成速度快、效果好。此外,其他模型如基于Stable Diffusion的二次元AI绘画模型NovelAI,也迅速崭露头角。这些模型的进步推动了整个AI绘画领域的发展。近年来,文本描述生成图片技术如MidJourney和DALL-E 2,促成了AI生成艺术作品的革命性...
Method: 冻结Stable Diffusion的参数,额外引入一个即插即用的Interaction Module。整个方法分为三个部分。1. 在caption中确定文本label三元组〈subject s , action a , and object o 〉。再根据提供的图像检测出subject和object的bounding boxes。缺少的action的bounding boxes由作者提出的“Between”操作得到。
stable diffusion model on your own dataset with as little as five images. For example, on the left are training images of a dog named Doppler used to fine-tune the model, in the middle and right are images generated by the fine-tuned model when asked to pred...
Text-to-Image with Stable Diffusion Stable Diffusion is a latent diffusion model conditioned on the (non-pooled) text embeddings of a CLIP ViT-L/14 text encoder. We provide areference script for sampling, but there also exists adiffusers integration, which we expect to see more active communi...
A multi-network combined text-to-building facade image generating method is proposed in this work. We first fine-tuned the Stable Diffusion model on the CMP Facades dataset using the LoRA (Low-Rank Adaptation) approach, then we apply the ControlNet model to further control the output. Finally...
提出ControlNet算法模型,用来给一个预训练好的text2image的diffusion model增加空间条件控制信息。作者尝试使用5w-1M的edges/depth/segmentation/pose等信息训练ControlNet,都能得到比较好的生成效果。为下游文生图使用者提供了极大的便利。MethodZeroConv FreezeNet与ControlNet模型是在Decoder部分融合特征的,ControlNet Decoder...
The training requirements of our approach consists of 24,602 A100-GPU hours –compared to Stable Diffusion 2.1's 200,000 GPU hours Problem to solve LDM is limited by how much the encoder-decoder model can compress the image without degradation. Proposed method A novel three-stage architecture ...