作为一个AI绘画模型深度使用者,就个人感受而言,AI绘画工具的表现确实让人耳目一新,而其本质其实是一种生成符合给定文本描述的真实图像(text-to-image)的崭新交互方式。 文本到图像模型(Text-to-image model) 文本到图像模型(Text-to-image model)是一种机器学习模型,它将自然语言描述作为输入并生成与该描述匹配的...
这两者在Diffusion Model会共用模型,并将带标记的样本与无标记的样本混合一起训练,对于无标记样本则将 y=null 用于区分即可。 GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models 至此,Diffusion Models主要的技术都已经储备完毕,OpenAI则借助上述各种技术,带着自己的“钞能力...
本次分享的是Google在text-to-image方面的论文:Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding,简称Imagen。 模型结构 Text Encoder:预训练好的文本编码器 Text-to-Image Diffusion Model:通过扩散模型,实现文本到低分辨率图像的生成 Super-Resolution Diffusion Model:将低分辨率图像进行两...
Text-to-Image Diffusion Model根据Text Embedding从随机噪声图迭代产生一幅与输入描述匹配的64x64小图,小图由Super-Resolution模块根据Text Embedding放大为256x256的中等尺寸图像,中等尺寸图像由另一个Super-Resolution模块同样根据Text Embedding最终产生1024x1024的高分辨率图像。
text-to-image diffusion model采样公式文本到图像的扩散模型采样公式主要是通过定义F_{\phi}left(x_t, y, t \right) = abla_{x_{t}} log p_{\phi}\left(y \mid x_{t}\right) 来实现的,其中x_t代表初始噪声,y是目标数据,t表示时间。采样过程可以通过调整 F_{\phi}\left(x_t, y, t \...
2、NoiseCollage: A Layout-Aware Text-to-Image Diffusion Model Based on Noise Cropping and Merging 布局感知的文本到图像生成,是一种生成反映布局条件和文本条件的多物体图像的任务。当前的布局感知的文本到图像扩散模型仍然存在一些问题,包括文本与布局条件之间的不匹配以及生成图像的质量降低。
text-to-image diffusion model是一种用于生成图像的神经网络模型,可以通过文本描述和草图作为引导来生成与输入条件相匹配的逼真图像。其原理是基于扩散模型,通过结合文本描述和草图,实现多模态图像生成的目标。 扩散模型是一种基于能量的生成模型,它通过在潜在空间中不断地迭代,来模拟图像的扩散过程,从而生成图像。在...
Stable Diffusion API 的文生图(Text to Image)端点允许你写正面提示词和负面提示词,正面提示词是针对你希望在图像中看到的内容,负面提示词是通过列出你不希望在生成的图像中看到的内容来完善你的描述。本文来介绍一下 Stable Diffusion API 中文生图(Text to Image)端点的使用,详情见下文。 Stable Diffusion API ...
对于Single-Concept Fine-tuning,给定一个预训练的text-to-image diffusion model,我们的目标是在模型中加入一个新的concept,只要给定四张图像和相应的文本描述进行训练。fine-tuning后的模型应保留其先验知识,允许根据文本提示使用新概念生成新的图像类型。
简介:Text to Image 文本生成图像定量评价指标分析笔记 Metric Value总结 IS、FID、R-prec等 一、介绍 文本生成图像的评估也是一个很有挑战性的工作,一个良好的t2i模型评价指标不仅要评估生成的图像是否真实,而且要评估文本描述与生成图像之间的语义相关性。