其在text-to-image diffusion models上的应用,证明了text-to-image diffusion models中,文本编码的能力并不一定需要CLIP中所携带的image-textalignment,即纯language models也可以用于编码文本信息。 T5的技术流程图 前文说到,LLMs的上下文学习能力决定了其对文本信息的强大表征能力,结合我们在T5-XXL中得出的结论,不难...
Snap Research团队通过引入高效的网络架构和改进步骤蒸馏,实现了移动端推理时间不到2秒的文本到图像扩散模型,让移动端本地跑SD模型成为可能 NeurIPs 2023:SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds 延迟分析 text-to-image扩散模型的推理过程主要由三个模块组成,Text Encoder(ViT...
text-to-image diffusion model原理text-to-image diffusion model是一种用于生成图像的神经网络模型,可以通过文本描述和草图作为引导来生成与输入条件相匹配的逼真图像。其原理是基于扩散模型,通过结合文本描述和草图,实现多模态图像生成的目标。 扩散模型是一种基于能量的生成模型,它通过在潜在空间中不断地迭代,来模拟...
text-to-image diffusion model采样公式文本到图像的扩散模型采样公式主要是通过定义F_{\phi}left(x_t, y, t \right) = abla_{x_{t}} log p_{\phi}\left(y \mid x_{t}\right) 来实现的,其中x_t代表初始噪声,y是目标数据,t表示时间。采样过程可以通过调整 F_{\phi}\left(x_t, y, t \...
Imagen主要模块及工作流程如图5,输入的文本描述由Frozen Text Encoder编码成Text Embedding, Text-to-Image Diffusion Model根据Text Embedding从随机噪声图迭代产生一幅与输入描述匹配的64x64小图,小图由Super-Resolution模块根据Text Embedding放大为256x256的中等尺寸图像,中等尺寸图像由另一个Super-Resolution模块同样根据...
3.3. Text-to-Image Diffusion Model 文本到图像扩散模型可以从提供的输入文本提示生成高质量的图像。它是用从互联网上抓取的数百万对图像-文本对进行训练的[59,64,67]。使用预训练的文本编码器(如T5[63]或CLIP[62])将文本编码为文本嵌入。在被输入到扩散网络之前,图像通过添加一定程度的高斯噪声而被扭曲。在给...
2、NoiseCollage: A Layout-Aware Text-to-Image Diffusion Model Based on Noise Cropping and Merging 布局感知的文本到图像生成,是一种生成反映布局条件和文本条件的多物体图像的任务。当前的布局感知的文本到图像扩散模型仍然存在一些问题,包括文本与布局条件之间的不匹配以及生成图像的质量降低。
Imagen: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding 时间:22/05 机构:Google TL;DR 发现使用LLM(T5)可以作为text2image任务的text encoder,并且提升LLM模型size相对于提升image DM模型size性价比更高,生成的图像保真度更高,内容也更符合文本的描述。在COCO上FID score达到7.27。另外...
Dreamfusion 不需要 3D 训练数据,也无需修改 image diffusion model,证明了预训练 image diffusion model 作为 prior 的有效性。 Magic3D 发布机构:NVIDIA 发布时间:2022 年 11 月 项目地址:deepimagination.cc/Magic3D/ Magic3D 是一个 text-to-3D 内容的创建工具,可用于创建高质量的 3D mesh model。利用 imag...
通过一个固定的text encoder(T5-XXL)提取文本embedding,然后经过一个输出大小为64x64的classifier-free Diffusion Model,最后经过两个级联的超分DM将图片分辨率放大到1024x1024,所有的DM都条件于text embedding。 text encoder对比了BERT(base模型参数量:1.1亿)CLIP(0.63亿)以及T5(模型参数量:110亿),后来发现T5效果最...