1、ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models 3D资产生成正受到大量关注,受到最近文本引导的2D内容创建成功的启发,现有的文本到3D方法使用预训练文本到图像扩散模型来解决优化问题,或在合成数据上进行微调,这往往会导致没有背景的非真实感3D物体。 本文提出利用预训练的文本到图像模型作为先...
Snap Research团队通过引入高效的网络架构和改进步骤蒸馏,实现了移动端推理时间不到2秒的文本到图像扩散模型,让移动端本地跑SD模型成为可能 NeurIPs 2023:SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds 延迟分析 text-to-image扩散模型的推理过程主要由三个模块组成,Text Encoder(ViT...
3、Discriminative Probing and Tuning for Text-to-Image Generation 尽管在文本-图像生成(text-to-image generation)方面取得了进步,但之前方法经常面临文本-图像不对齐问题,如生成图像中的关系混淆。现有解决方案包括交叉注意操作,以更好地理解组合或集成大型语言模型,以改进布局规划。然而,T2I模型的固有对齐能力仍然不...
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型 今天介绍CV计算机视觉的第四篇,文生图/图生图(text-to-image/image-to-image)。tr...
【新智元导读】利用文本生成图片(Text-to-Image, T2I)已经满足不了人们的需要了,近期研究在T2I模型的基础上引入了更多类型的条件来生成图像,本文对这些方法进行了总结综述。 在视觉生成领域迅速发展的过程中,扩散模型已经彻底改变了这一领域的格局,通过其令人印象深刻的文本引导生成功能标志着能力方面的重大转变。
Stable Diffusion (SD)是当前最热门的文本到图像(text to image)生成扩散模型。尽管其强大的图像生成能力令人震撼,一个明显的不足是需要的计算资源巨大,推理速度很慢:以 SD-v1.5 为例,即使用半精度存储,其模型大小也有 1.7GB,近 10 亿参数,端上推理时间往往要接近 2min。
【新智元导读】利用文本生成图片(Text-to-Image, T2I)已经满足不了人们的需要了,近期研究在T2I模型的基础上引入了更多类型的条件来生成图像,本文对这些方法进行了总结综述。 在视觉生成领域迅速发展的过程中,扩散模型已经彻底改变了这一领域的格局,通过其令人印象深刻的文本引导生成功能标志着能力方面的重大转变。
我们介绍了 Imagen,这是一种文本到图像的扩散模型,具有前所未有的逼真度和深层次的语言理解。 Imagen 建立在理解文本的大型 Transformer 语言模型的强大功能之上,并依赖于扩散模型在高保真图像生成方面的优势。 我们的关键发现是,在纯文本语料库上预训练的通用大型语言模型(例如T5)令人惊讶 有效编码文本以进行图像合成:...
text-to-image diffusion model采样公式文本到图像的扩散模型采样公式主要是通过定义F_{\phi}left(x_t, y, t \right) = abla_{x_{t}} log p_{\phi}\left(y \mid x_{t}\right) 来实现的,其中x_t代表初始噪声,y是目标数据,t表示时间。采样过程可以通过调整 F_{\phi}\left(x_t, y, t \...
text-to-image diffusion model是一种用于生成图像的神经网络模型,可以通过文本描述和草图作为引导来生成与输入条件相匹配的逼真图像。其原理是基于扩散模型,通过结合文本描述和草图,实现多模态图像生成的目标。 扩散模型是一种基于能量的生成模型,它通过在潜在空间中不断地迭代,来模拟图像的扩散过程,从而生成图像。在...