7 Echo embedding: 把文本重复两次,自回归模型就能生成更高质量的embedding 8 Matryoshka Embedding Models: 可以自由截断embedding长度 9 LLM2Vec: 改造Decoder-only LLM以生成高质量text embedding 10 NV-Embed: 不装了,NVIDIA亲自下场,发布自家embedding模型并成功登顶MTEB 11 SFR-Embedding-Mistral: 都来看看吧,大佬...
Text embedding就是将文本转成一组固定维度的向量表示。我们所熟知的word embedding是以token为基本单位,而text embedding则是以文本为基本单位的。理想的text embedding应该尽可能保留文本的语义信息,相同语义但不同表述方式的文本可以被映射到同一个位置,而不同语义的文本在向量空间应该保持对应的距离。 Text embedding...
如果说其他模型让积木能够理解和生成文本,文本嵌入模型则提供了理解文本深度含义的能力。它们就像是一种...
Highly accurate and effective models like NV-Embed are key to transforming vast amounts of data into actionable insights. NVIDIA provides top-performing models through theNVIDIA API catalog. LLM-powered “Talk to your Data” pipelines rely heavily on anembedding modellike NV-Embed, which creates a...
(model=TextEmbedding.Models.text_embedding_v1, input=text) embeddings = [record['embedding'] for record in rsp.output['embeddings']] return embeddings if isinstance(text, list) else embeddings[0] # 查看下embedding向量的维数,后面使用 DashVector 检索服务时会用到,目前是1536 print(len(generate_...
:有道的开源 embedding and reranker models for RAG products. 模型的评估 论文:MTEB: Massive Text Embedding Benchmark (2022.10,Hugging Face) 代码:embeddings-benchmark/mteb :大规模文本嵌入评估 中文文本嵌入评估:CMTEB 向量的检索 向量搜索库 Approximate Nearest Neighbor(ANN)是一种用于在大规模数据集中寻找...
[env: TOKENIZATION_WORKERS=] --dtype <DTYPE> The dtype to be forced upon the model [env: DTYPE=] [possible values: float16, float32] --pooling <POOLING> Optionally control the pooling method for embedding models. If `pooling` is not set, the pooling configuration will be parsed from ...
also discovered that the prompt-response pairs from LLMs can be used for embedding training. Our approach effectively enhances the capabilities of embedding models, currently ranking first on the Chinese leaderboard of Massive text embedding benchmark (MTEB). ...
def _position_embedding(self): """ 生成位置向量 :return: """ batch_size = self.config["batch_size"] sequence_length = self.config["sequence_length"] embedding_size = self.config["embedding_size"] # 生成位置的索引,并扩张到batch中所有的样本上 ...
[env: TOKENIZATION_WORKERS=] --dtype <DTYPE> The dtype to be forced upon the model [env: DTYPE=] [possible values: float16, float32] --pooling <POOLING> Optionally control the pooling method for embedding models. If `pooling` is not set, the pooling configuration will be parsed from ...