code-davinci-002是一个基础模型,适用于纯代码补全任务。 text-davinci-002是基于code-davinci-002的InstructGPT模型。 text-davinci-003是text-davinci-002的改进版。 gpt-3.5-turbo-0301是在text-davinci-003的基础上进行了改进,针对聊天应用进行了优化。
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的思考链版本(Chain-of-Thought)。并在两种设置下测试基线模型:一种...
text-davinci-002 和 text-davinci-003)统称,于GPT-3相比,它的最大不同是针对人类指令(reinforcement learning with human feedback, RLHF)进行了微调 ; InstructGPT 产生的幻觉更少,更真实,但它在生成的多样性或者说创意上相对更差,因为它们试图在“对齐”的前提下,将人类偏好/价值观硬塞进原始数据模型中。
先看下GPT的发展时间线 InstructGPT(2022 年 1 月)是一系列 GPT-3 模型(包括 text-davinci-001、text-davinci-002 和 text-davinci-003)统称,于GPT-3相比,它的最大不同是针对人类指令(reinforcement learni…
001、text-davinci-002 和 text-davinci-003)统称,于GPT-3相比,它的最大不同是针对人类指令(reinforcement learning with human feedback, RLHF)进行了微调 ; InstructGPT 产生的幻觉更少,更真实,但它在生成的多样性或者说创意上相对更差,因为它们试图在“对齐”的前提下,将人类偏好/价值观硬塞进原始数据模型...
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的...
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的思考链版本(Chain-of-Thought)。并在两种设置下测试基线模型:一种是完全的 ...
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的思考链版本(Chain-of-Thought)。并在两种设置下测试基线模型:一种是完全的 ...
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的思考链版本(Chain-of-Thought)。并在两种设置下测试基线模型:一种是完全的 ...
作者选择了在之前基准测试中,表现突出的训练式 T5 模型和大型语言模型(LLM)作为基线模型:Codex(code-davinci-002)和 ChatGPT(gpt-3.5-turbo)。为了更好地理解多步推理是否能激发大型语言模型在真实数据库环境下的推理能力,还提供了它们的思考链版本(Chain-of-Thought)。并在两种设置下测试基线模型:一种是完全的 ...