PyTorch: 这个工具箱也很好用,也很强大,但是它比TensorFlow更容易上手,像积木一样,可以一块一块地搭建你的“房子”。 Keras: 它不是一个独立的工具箱,更像是一个方便的“说明书”,可以让你更容易地使用TensorFlow或者其他一些工具箱。它让盖房子变得简单一些。 Scikit-learn: 这个工具箱专门用来盖一些比较简单的...
适用于相对简单的任务: 对于复杂的深度学习任务,Scikit-learn可能显得力不从心。3.3 Scikit-learn的适用场景适用于传统的机器学习任务,如分类、回归和聚类等,对深度学习需求不高的项目。 第四部分:如何选择? 4.1 项目需求和规模 大规模深度学习项目: TensorFlow可能是更好的选择。 中小规模深度学习项目: PyTorch提供...
例如,如果项目涉及深度学习,如卷积神经网络(CNN),那么PyTorch或TensorFlow更为合适。如果是传统的机器学习项目,Scikit-Learn则更为便捷。 第二步:了解每个框架的特点 PyTorch:动态计算图,更加灵活,适合研究和原型开发。 TensorFlow:静态计算图,适合大型部署,且具备丰富的生产支持。 Scikit-Learn:专注于传统机器学习算法,...
Keras是一个在Python中使用的高级神经网络库,它运行在TensorFlow之上。Keras的设计理念是“用户友好,模块化,易于扩展”,这使得Keras对于初学者非常友好。然而,对于一些复杂的模型,Keras可能没有TensorFlow和PyTorch那么强大。 编辑 4.Scikit-learn:Scikit-learn是一个广泛用于统计建模和机器学习的Python库。它提供了大量的...
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cpuonly -c pytorch 五、安装图像处理相关库(扩展) 安装skimage、matplotlib、opencv库,操作方法与上述一致,使用命令如下: conda install scikit-image conda install scikit-learn
PyTorch则更加灵活,适合快速原型设计和实验。Scikit-learn则专注于机器学习领域,提供了丰富的算法和工具。Keras则是一个易于使用的神经网络库,适合快速构建深度学习模型。 社区支持 在社区支持方面,这几个库都有广泛的用户基础和活跃的开发者社区。TensorFlow和PyTorch的社区非常庞大,有大量的教程、案例和资源可供参考。
y_pred = per_clf.predict(X_new)# predicts True and False for these 2 flowers 您可能已经注意到感知器学习算法与随机梯度下降(在第四章介绍)非常相似。事实上,Scikit-Learn 的Perceptron类等同于使用具有以下超参数的SGDClassifier:loss="perceptron"、learning_rate="constant"、eta0=1(学习率)和penalty=None...
训练scikit-learn 模型 训练TensorFlow 模型 训练Keras 模型 训练PyTorch 模型 优化超参数 分布式训练和深度学习 跟踪和监视 调试作业 计划作业 使用基础模型 使用生成式 AI 负责任地开发和监视 使用管道协调工作流 部署以用于推理 使用MLOps 实现操作化 监视模型 ...
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch 5、常用使用模块 #安装常见模块 pip install thop einops seaborn matplotlib imgaug augly lightgbm xgboost fastapi pydantic uvicorn pillow tqdm pandas scipy shapely pymysql matplotlib opencv-python opencv-contrib-python scikit-learn imutils mnn onn...
根据自己的安装版本,在Pytorch官网(https://pytorch.org/)寻找安装命令代码: 将复制的代码粘贴到命令行格式下,弹出提示,输入 y,即可完成安装(根据自己想要按照的CPU或者GPU版本选择)。 测试pytorch 二、jupyter使用虚拟环境 (注:这里我创建了两个虚拟环境tensorflow和pytorch,有一个不起作用,不知道为啥) # 包的管理...