不同版本的tensorflow-gpu与CUDA对应关系如下表所示(图片有点旧了,python版本是2.7和3.3-3.8): 对于版本号大于1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,如下图所示: 如果是2.0以上的tensorflow,按下面列表安装(20...
1、安装前准备 在Tensorflow官网的安装向导中可以看到,tf有两个版本,分别为CPU和GPU版本,两个版本的区别在于:GPU版本依赖于NVIDIA(英伟达™)GPU(图形处理器,即显卡),并且通过NVIDIA提供的运算平台CUDA(Compute Unified Device Architecture)及cuDNN(CUDA Deep Neural Network)对一些常用的神经网络操作进行性能提升,但是...
CPU版本和GPU版本的区别主要在于运行速度,GPU版本运行速度更快,所以如果电脑显卡支持cuda,推荐安装gpu版本的。 CPU版本,无需额外准备,CPU版本一般电脑都可以安装,无需额外准备显卡的内容,(如果安装CPU版本请参考网上其他教程!) GPU版本,需要提前下载 cuda 和 cuDNN。(本文为GPU版本安装教程。) Tensorflow-gpu版本安装...
如果有出现,那就表示可以使用Tensorflow-gpu版本,如果没有的就只能老老实实安装CPU版咯。 然后可以去NIVIDIA官网查询一下自己电脑显卡的算力:https://developer.nvidia.com/cuda-gpus,建议算力>=3.5安装 2、查看GPU驱动版本,也就是我们“CUDA Version”,Windo...
tensorflow安装GPU版本 tensorflow安装GPU版本主要要点 1.先通过该网站查看tensorflow和cuda和cudnn版本以及visual studio(MSVC)的对应关系。(可供参考) https://www.tensorflow.org/install/source_windows#gpu 在英伟达控制面板,点击右下角的系统信息,可查看驱动的版本信息,点击上方的组件,可查看需要的cuda的版本(这里...
一般情况1.0已经足够,但是如果要进行深度神经网络的训练,当然还是tensorflow2.*-gpu比较快啦。 其中tensorflow有CPU和GPU两个版本(2.0安装方法), CPU安装比较简单: pip install tensorflow-cpu 一、查看显卡 日常CPU足够,想用GPU版本,要有NVIDIA的显卡,查看显卡方式如下: ...
选择您的GPU驱动程序版本,确保与您的系统兼容。 确认安装路径,然后点击“下一步”。 等待安装完成。 验证CUDA是否正确安装。打开终端,输入以下命令:nvcc --version。如果成功显示CUDA版本信息,则表示安装成功。步骤三:安装cuDNN 7.6接下来,我们需要安装cuDNN 7.6,它是深度神经网络的加速库。前往NVIDIA官网下载cuDNN ...
TF GPU版本型号 安装流程 其他安装包 常用操作命令 References 对应的版本信息为tensorflow 2.4.0、python 3.8、cudatoolkit 11.0.3、cudnn 8.0.5.39、keras 2.4.3。 TF GPU版本型号 根据下图,注意tensorflow,python,cudnn,cudatoolkit这四个版本对应的型号。
选择安装版本:pip install tensorflow-gpu==1.4.0 9.确认tensorflow安装成功: 错误尝试:直接在cmd里面键入python,然后键入import tensorflow as tf 遇到问题:No module named 'tensorflow' 是因为我们环境中包含了2个python环境,一个base,一个tensorflow-gpu,两个环境版本可以是一样的,笔者的均是3.6.4。