①首先,根据安装的CUDA版本下载对应的cuDNN版本,以及对应的tensoflow-gpu版本、python版本都从这里查看,详细信息查看该网址 https://tensorflow.google.cn/install/source_windows。 因为本机安装的CUDA10.1版本,所以选择cuDNN7.6进行下载,下面红框中的都可以选择。 ②下载完成后,解压此文件,将cudnn文件中对应的文件移...
不同版本的tensorflow-gpu与CUDA对应关系如下表所示(图片有点旧了,python版本是2.7和3.3-3.8): 对于版本号大于1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,如下图所示: 如果是2.0以上的tensorflow,按下面列表安装(20...
TensorFlow 1.x系列是较旧版本的TensorFlow,但它仍然被广泛使用。以下是TensorFlow 1.x系列与CUDA和cuDNN的对应关系: TensorFlow 1.15:CUDA 9.0,cuDNN 7.0 TensorFlow 1.14:CUDA 9.0,cuDNN 7.0 TensorFlow 1.13:CUDA 8.0,cuDNN 7.0 TensorFlow 1.12:CUDA 8.0,cuDNN 7.0 TensorFlow 1.11:CUDA 8.0,cuDNN 6.0 TensorF...
要搭建TensorFlow的GPU版本,首先需要的必备条件就是一块能够支持CUDA的NVIDIA显卡,因为在搭建TensorFlow的GPU版本时,首先需要做的一件事就是安装其基础支持平台CUDA和其机器学习库cuDNN,然后在此基础上搭建TensorFlow GPU版本。 其次还要了解一下不同的TensorFlow版本所需要对应安装的CUDA和cuDNN版本是多少,因为在TensorFlow...
显示True,说明安装成功。另外,可以通过 print(tf.sysconfig.get_build_info()['cuda_version']) 来查看tensorflow对应的cuda版本 受限于tensorflow-gpu 2.6.0 对numpy版本的要求为1.19.5,导致一些常用包可能需要安装低版本的,比如: pip install pandas==1.3.5 ...
CUDA下载地址 CUDNN下载地址 torch下载 英伟达显卡下载一、TensorFlow对应版本对照表版本Python 版本编译器cuDNNCUDA tensorflow-2.9.0 3.7-3.10 8.1 11.2 tensorflow-2.8.0 3.7-3.10 8.1 11.2 tensorflow-2.7.0 3.7-3.9 8.1 11.2 tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 8.1 11.2 tensorflow-2.5.0 3.6-3.9 GCC ...
2. 安装GPU版本的tensorflow,及其cuda和cudnn: 同样的安装tensorflow一样,先将对应版本的cudn和cudnn,然后再安装tensorflow-gpu: Build from source on Windows | TensorFlowtensorflow.google.cn/install/source_windows?hl=en#gpu 注:conda install报错的文章末尾,不同的conda版本安装的cudatoolkit以及cudnn不同...
由于我安装两个版本的cuda,这个时候使用tensorflow -gpu之后就是系统可以自由 切换到与tensorflow对应的cuda版本。不会出现冲突的现象; 如果你打算删掉之前的cuda版本,你要想卸载之后还要清空注册表,不然会出现冲突现象,所以,做一件事情之前要先调研好一切可能发生的情况; ...
Tensorflow 1.x系列:推荐使用CUDA 8.0和cudnn 5.1版本。 Tensorflow 2.x系列:推荐使用CUDA 10.0和cudnn 7.6版本。 Tensorflow 2.x系列(GPU版本):推荐使用CUDA 11.0和cudnn 8.0版本。 Tensorflow 2.x系列(最新版本):推荐使用与当前CUDA和cudnn最新版本相对应的版本。 在安装Tensorflow时,为了确保与特定版本的CUDA和...
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin //该路径下 1. 5.或者在python3.6环境下输入 conda info --envs 1. 有详细路径地址的则为安装成功 6.跑一个TensorFlow程序验证,TensorFlow用的是否是GPU import tensorflow.compat.v1 as tf #我的版本为2.0则导入TensorFlow的命令为这个,2.0以下...