TensorFlow-CPU版本是专为中央处理器(CPU)优化的版本。它充分利用了多核CPU的计算能力,使得在CPU上运行TensorFlow应用程序更加高效。TensorFlow-CPU版本适合在没有图形处理器(GPU)的环境中使用,或者在无法获得GPU访问权限的情况下使用。三、TensorFlow-GPUTensorFlow-GPU版本是专为图形处理器(GPU)优化的版本。它利用了GPU...
TensorFlow-GPU版与CPU版的主要区别在于其计算能力的差异。GPU版TensorFlow利用了图形处理单元(GPU)的并行处理能力,使得在处理大规模数据集时能够显著提高计算速度。相比之下,CPU版TensorFlow主要依赖于中央处理器(CPU)进行计算,虽然在处理小规模数据集时也能表现出色,但在处理大规模数据集时,其计算速度会明显低于GPU版。
从tensorflow库的1.15版本以后,就不再区分CPU与GPU版本了,只要下载了tensorflow库,那么他自身就是CPU与GPU都支持的;我们目前到此为止配置的tensorflow库之所以不能在GPU中加以运行,是因为我们还没有将GPU运算需要的其他依赖项配置好(或者是电脑中完全就没有GPU)。
注:我用的是cmd管理员安装,在安装tensorflow的时候有错误或者很长时间没有往下进行可以按下enter键,这样安装是可以在windows环境下Anaconda和Pycharm都可以使用。 初学者,上述安装的是CPU版,tensorflow GPU比CPU版本运行速度要快,但是安装比较麻烦,网上还有很多Anaconda环境下得安装教程,是在Anaconda环境下搭建的GPU版,有...
因此,在这篇文章中,我们就介绍一下在Anaconda环境中,配置tensorflow库的详细方法;此外,这里需要注意,在较新版本的tensorflow库(版本大于1.5 ,但对于Windows用户而言,版本还不能高于2.10)中,已经同时支持CPU、GPU训练,不需要再区分是配置CPU版本的库还是GPU版本的库了。 首先,和Anaconda环境配置其他...
一般情况1.0已经足够,但是如果要进行深度神经网络的训练,当然还是tensorflow2.*-gpu比较快啦。 其中tensorflow有CPU和GPU两个版本(2.0安装方法), CPU安装比较简单: pip install tensorflow-cpu 一、查看显卡 日常CPU足够,想用GPU版本,要有NVIDIA的显卡,查看显卡方式如下: ...
安装Tensorflow 分为 tensorflow_cpu 和 tensorflow_gpu版本 GPU就是用来渲染计算的,GPU版本计算性能是CPU的百倍之快。如果电脑没有独立显卡只能用CPU版本计算。 CPU版本安装: tensorflow_cpu版本只需要安装anaconda后在anaconda prompt里面pip install tensorflow_cpu==(版本号) 即可。安装anaconda的方法见GPU版本里面。
运行上述代码,如果得到如下图所示的一个空列表[],则表示当前tensorflow库并不支持GPU运算——当然这个是肯定的,我们这里配置的就是CPU版本的tensorflow库,自然是无法在GPU中加以运算了。 至此,tensorflow库也可以正常使用了,但是他只能支持CPU运算。这里有必要提一句,其实我们通过前述方法配置的tensorflow库,其自身原理...
Tensorflow 使用CPU 和GPU有什么区别? 在大数据集情况下,CPU 版本无法加速运算,计算速度相对缓慢,此时,GPU的性能要比CPU强大很多,所以推荐使用GPU。但在小数据集的情况下CPU和UGPU的性能差别不大。CPU 版本暂可用作学习,如为了学习模型算法,数据集不大,使用 CPU 版本也能勉强应付。待日后对深度学习有了一定了解再...