一、写在前面 RKNN-Toolkit2支持的深度学习框架包括Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet和PyTorch。 它和各深度学习框架的版本对应关系如下: RKNN-Toolkit2CaffeTensorFlowTF LiteONNXDarkNetPyTo…
然而,工具库和工具库之间的相互切换,是一件很麻烦的事情,比如某公司团队开发主要使用TensorFlow,然而现在有一个深度算法,需要使用 caffe2 部署在移动设备上,那我们需要用 caffe2 重写模型重新训练,这是一个非常耗时耗力的过程。 ONNX 便应运而生,TensorFlow、Caffe2、PyTorch、paddlepaddle、Microsoft Cognitive Toolkit...
Pytorch目前主要在学术研究方向领域处于领先地位,许多学术论文都是用pytorch编写的,因此使用范围更广。 其优点在于:PyTorch可以使用强大的GPU加速的Tensor计算(比如:Numpy的使用)以及可以构建带有autograd的深度神经网络。 同时,PyTorch 的代码很简洁、易于使用、支持计算过程中的动态图而且内存使用很高效,版本之间差异也不大...
ONNX 便应运而生,TensorFlow、Caffe2、PyTorch、paddlepaddle、Microsoft Cognitive Toolkit、Apache MXNet 等主流框架都对 ONNX 有着不同程度的支持。这就便于了我们的算法及模型在不同的框架之间的迁移。 ONNX(Open Neural Network Exchange)是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得...
ONNX 便应运而生,TensorFlow、Caffe2、PyTorch、paddlepaddle、Microsoft Cognitive Toolkit、Apache MXNet 等主流框架都对 ONNX 有着不同程度的支持。这就便于了我们的算法及模型在不同的框架之间的迁移。 ONNX(Open Neural Network Exchange)是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得...
雷锋网 AI 研习社按,上个月,Caffe2 代码正式并入 PyTorch,就在今天,Facebook AI 系统与平台部(AI Infra and Platform)副总 Bill Jia 发文表示,PyTorch 1.0 发布在即,全新的版本融合了 Caffe2 和 ONNX 支持模块化、面向生产的功能,并保留了 PyTorch 现有的灵活、以研究为中心的设计。Caffe2 作者贾扬清...
虽然目前 ONNX 已经原生支持 MXNet、PyTorch 和 Caffe2 等大多数框架,但是像 TensorFlow 或 Keras 之类的只能通过第三方转换器转换为 ONNX 格式。 而且比较重要的一点是,现阶段 ONNX 只支持推理,导入的模型都需要在原框架完成训练。所以,想要加入其它框架的模型,还是得手动转写成相同框架,再执行训练。 神奇的转换...
有了ONNX,开发人员可以在不同框架之间共享模型,例如,导出在 PyTorch 中构建的模型,并将它们导入到 Caffe2 中。这使得 Facebook 能在大规模服务器和移动端部署时更流畅地进行 AI 研究、训练和推理。 我们已经使用了这些工具(PyTorch、Caffe2 和 ONNX)来构建和部署 Translate,Translate 已经在大规模使用——帮助翻...
ONNX 是机器学习和深度学习模型的开放格式。它允许您将不同框架(如 TensorFlow 、 PyTorch 、 MATLAB 、 Caffe 和 Keras )的深度学习和机器学习模型转换为单一格式。 它定义了一组通用的运算符、深入学习的通用构建块集和通用文件格式。它提供计算图的定义以及内置运算符。可能有一个或多个输入或输出的 ONN...
现在,有个好消息:无论Caffe、TensorFlow、ONNX都可以轻松迁移到飞桨平台上。虽然目前还不直接迁移PyTorch模型,但PyTorch本身支持导出为ONNX模型,等于间接对该平台提供了支持。 然而,有人还对存在疑惑:不同框架之间的API有没有差异?整个迁移过程如何操作,步骤复杂吗?迁移后如何保证精度的损失在可接受的范围内?