在Kinetics-400和Something数据集上,TDN在使用类似骨架时,达到了比当前最先进的方法更好的性能,并且TDM为视频中的时间建模,提供了一个替代3D卷积的方法。这篇论文与TSM一样,通过增加一个模块,实现一个伪3D的架构,带来视频识别性能的提升。消融实验做得非常好,很有学习意义。 第五部分 论文素材积累 1个思路:略 2...
Paper : TDN: Temporal Difference Networks for Efficient Action Recognition Code : MCG-NJU / TDN [C] CVPR 2021 1 动机和主要贡献 本文认为短期时序信息和长期时序信息对行为识别非常重要,两种特征即具有独特的语义,同时也彼此互补。 NOTE : 文中表述的短期时序信息(short-term temporal information)和 长期时...
(2004). Temporal-Difference Networks. In Advances in Neural Information Processing Systems (NIPS'04), pages 1377-1384.Sutton, Richard S and Tanner, Brian. Temporal-difference networks. In Saul, L.K., Weiss, Y., and Bottou, L. (eds.), Advances in Neural Information Processing Systems 17,...
1.1 short-term TDM TDM全名为 temporal difference module,可以知道TDM模块里存在一些差值的计算,而short-term指的就是短时间内局部信息的差值。举例说明,对于给定的一个视频V来说,首先类似TSN的处理方式,将视频等时长的分为T份。然后在等分的子视频中随机抽取一帧图像,那么视频V就可以输出T帧图像,用符号表示为 ...
Security Insights Additional navigation options main 1Branch 0Tags Code This branch is2 commits ahead of,2 commits behindMCG-NJU/TDN:main. README Apache-2.0 license Overview We release the PyTorch code of theTDN(Temporal Difference Networks). This code is based on theTSNandTSMcodebase. The core...
【视频行为识别】3D Convolutional Neural Networks for Human Action Recognition: 3D Convolutional Neural Networks for Human Action Recognition 一个卷积map的某一位置的值是通过卷积上一层的三个连续的帧的同一个位置的局部感受野得到的。 3D CNN架构包含一个硬连线hardwired层、3个卷积层、2个下采样层和一个全...
We release the PyTorch code of theTDN(Temporal Difference Networks). This code is based on theTSNandTSMcodebase. The core code to implement the Temporal Difference Module areops/base_module.pyandops/tdn_net.py. TL; DR.We generalize the idea of RGB difference to devise an efficient temporal...
The activation function, a central unit in the design of neural networks, gives the ability to learn and adapt for the neurons56,57. It incorporates nonlinear factors in the neural network to address the defect of expression ability of the linear model. If the activation function isn’t used...
差于优化后的启发式算法,但是他所提出的RL方法也还是具备一些启发式方法所不具备的特点的,那就是他所提出的RL方法在训练好后不进行树搜索,在测试时游戏运行速度可以是那些使用启发式方法进行树搜索方法的5000倍,而改名研究者也为此撰写了一片论文,即《Temporal Difference Learning of N-Tuple Networks for the ...
N. (1998). Call admission control and routing in integrated service networks using reinforcement learning. In Proceedings of the 1998 IEEE CDC, Tampa, FL. Schwartz, A. (1993). A reinforcement learning algorithm for maximizing undiscounted rewards. In Proceedings of the Tenth Machine Learning ...