1.1 ST-Conv Block 每一个 ST-Conv Block 是由两个 Gated Temporal Convolution layer 夹着一个 Graph Convolution layer 组成。之所以,TGC 的 channel number 是 64,SGC 的是 16,是因为原作者认为这种「三明治」结构既可以achieve fast spatial-state propagation from graph convolution through temporal convolution...
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting 论文笔记---GCN在交通领域的应用(二) 一、论文翻译: 1、摘要: 及时准确地交通预测对于城市交通控制和指导具有至关重要的意义。由于交通流量的非线性和复杂性,传统的方法不能满足中长期预测任务的需求,并且往往会忽略时...
本文详细解析了Spatio-Temporal Graph Convolutional Networks(STGCN)模型,特别是其在交通流量预测领域的应用。首先澄清了STGCN与ST-GCN的区别,指出前者主要针对交通流量预测,而后者则应用于人体骨骼动作识别。模型的核心在于结合Graph Convolution和Gated Causal Convolution,无需依赖于LSTM或GRU进行预测。STG...
[TOC] Spatial-Temporal Graph Convolutional Network for Video-based Person Re-identification(CVPR2020) 行人重识别 行人重识别(Person Re-identification),简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该...
提出模型:Spatio-Temporal Graph Convolutional Networks (STGCN)。instead of 常规卷积和递归单元,本文在图上公式化问题,并使用完整的卷积结构构建模型,使得以更少的参数实现更快的训练速度。 流量预测分为:短期(5-30min),中长期(>30min)。 RNN迭代训练会累积误差,并且难训练,计算量大。为了解决RNN内在这个问题,...
现存交通预测方法缺陷:一些交通预测方法(ARIMA、Kalman filtering model,etc)只关注了交通状况的动态变化而忽视了空间关系,导致交通状态的变化不被道路网约束,同时一些模型尝试使用卷积神经网络进行空间性建模,但这些模型一般只使用于欧几里得类型的数据(规则矩阵、图像等),无法在拓扑结构的城市交通网络中运作。
GCN用于学习复杂的拓扑结构以捕获空间依赖性,而GRU用于学习交通数据的动态变化以捕获时间依赖性。T-GCN的代码:GitHub - lehaifeng/T-GCN: Temporal Graph Convolutional Network for Urban Traffic Flow Prediction Method 现有的流量预测方法:自回归综合移动平均(ARIMA)模型,SVM 和部分神经网络,考虑了交通的动态变化而...
the paper "Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting" 文章全部内容+对应ppt请查看:STGCN-keras 问题定义 如何准确的进行中长期的交通预测(中长期:over 30 minutes) 本篇论文主要是对地点的速度进行预测 ...
论文翻译:Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition,程序员大本营,技术文章内容聚合第一站。
SpatialTemporalGraphConvolutionalNetworksforS。。。Spa tia l Tempo r a l Gr a ph Co nvo lutio na l N etw o rk s fo r Sk eleto n-Ba sed Ac tio n l Tem po l Gra R ec o gnitio n 摘要 动态⼈体⾻架模型带有进⾏动作识别的重要信息,传统的⽅法通常使⽤⼿⼯特征或者遍历...