其流量控制或者拥塞控制依赖于滑动窗口和拥塞窗口的滑动来实现,而这两个窗口的滑动实现则是依赖于TCP中的两个buffer,这两个buffer则是TCP socket在内核中的发送缓冲区(send buffer)和接收缓冲区(recv buffer)。 在本文中,我们首先会简单介绍下TCP中发送缓冲区和接收缓冲区的作用(对于后面理解send和recv
其流量控制或者拥塞控制依赖于滑动窗口和拥塞窗口的滑动来实现,而这两个窗口的滑动实现则是依赖于TCP中的两个buffer,这两个buffer则是TCP socket在内核中的发送缓冲区(send buffer)和接收缓冲区(recv buffer)。 在本文中,我们首先会简单介绍下TCP中发送缓冲区和接收缓冲区的作用(对于后面理解send和recv非常重要),然...
先明确一个概念:每个TCP socket在内核中都有一个发送缓冲区和一个接收缓冲区,TCP的全双工的工作模式以及TCP的滑动窗口便是依赖于这两个独立的buffer以及此buffer的填充状态。接收缓冲区把数据缓存入内核,应用进…
recv()所做的工作,就是把内核缓冲区中的数据拷贝到应用层用户的buffer里面,并返回,仅此而已。 进程调用send()发送的数据的时候,最简单情况(也是一般情况),将数据拷贝进入socket的内核发送缓冲区之中,然后send便会在上层返回。换句话说,send()返回之时,数据不一定会发送到对端去(和write写文件有点类似),send()...
sendbuffer相当于发送仓库的大小,仓库的货物都发走后,不能立即腾出来发新的货物,而是要等对方确认收到了(ack)才能腾出来发新的货物。 传输速度取决于发送仓库(sendbuffer)、接收仓库(recvbuffer)、路宽(带宽)的大小,如果发送仓库(sendbuffer)足够大了之后接下来的瓶颈就会是高速公路了(带宽、拥塞窗口)。而实际上这...
在前面的几篇文章中,我们有提过,TCP是个可靠的、全双工协议。其流量控制或者拥塞控制依赖于滑动窗口和拥塞窗口的滑动来实现,而这两个窗口的滑动实现则是依赖于TCP中的两个buffer,这两个buffer则是TCP socket在内核中的发送缓冲区(send buffer)和接收缓冲区(recv buffer)。
文章探讨Linux网络应用性能优化,聚焦TCP内核参数。解析连接建立时的半连接队列与accept队列,数据包接收时的Ring Buffer、接收队列及recv Buffer,还有发送时的send Buffer、QDisc等参数,助力理解记忆,提升网络性能。
TCP 通过套接字接口提供数据传输服务。应用程序可以使用read()、write()或专门的套接字系统调用如recv()和send()进行数据传输。 连接管理: TCP 连接的建立和终止通过三次握手和四次挥手过程管理。这些过程确保了连接的稳定建立和优雅关闭。 超时和重传:
一个数据包,从聊天框里发出,消息会从聊天软件所在的用户空间拷贝到内核空间的发送缓冲区(send buffer),数据包就这样顺着传输层、网络层,进入到数据链路层,在这里数据包会经过流控(qdisc),再通过 RingBuffer 发到物理层的网卡。数据就这样顺着网卡发到了纷繁复杂的网络世界里。这里头数据会经过 n 多个路由器和交换...
1、sendBuffer 同recvBuffer类似,和sendBuffer有关的参数如下:net.ipv4.tcp_wmem = net.core.wmem_defaultnet.core.wmem_max 发送端缓冲的自动调节机制很早就已经实现,并且是无条件开启,没有参数去设置。如果指定了tcp_wmem,则net.core.wmem_default被tcp_wmem的覆盖。sendBuffer在tcp_wmem的最小值和最大值之间...