__init__() """ :param num_inputs: int, 输入通道数或者特征数 :param num_channels: list, 每层的hidden_channel数. 例如[5,12,3], 代表有3个block, block1的输出channel数量为5; block2的输出channel数量为12; block3的输出channel数量为3. :param kernel_size: int, 卷积核尺寸 :param dropout...
classTCN:def__init__(self,input_shape,output_size,num_channels,kernel_size,dropout_rate):self.input_shape=input_shape self.output_size=output_size self.num_channels=num_channels self.kernel_size=kernel_size self.dropout_rate=dropout_ratedefbuild_model(self):input_layer=layers.Input(shape=self....
网络深度n就是有多少个block,反应到源代码的变量为num_channels的长度,即len(numchannels)len(numchannels)。 classTemporalConvNet(nn.Module): def__init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self).__init__() """ :param num_inputs: int, 输...
第一层的 nr_input_channels = input_size,最后一层的 nr_output_channels = output_size。 所有其他层将使用 num_filters 给出的中间通道号。 因果(Causal )卷积 对于因果关系的卷积层,对于\{0, ..., input\_length— 1\} 中的每个i,输出序列的第i个元素可能仅取决于索引为 {0, ..., i} 的...
nrinputchannels和nroutputchannels这两个变量取决于该层在网络中的位置。第一层是nrinputchannels = inputsize,最后一层是nroutputchannels = outputsize。所有其他层将使用由num_filters提供的中间通道号。 因果卷积 对于因果关系,对于{0,…,inputlength - 1}中的每一个i,输出序列的第i个元素可能只依赖于索引为...
# num_channels: 通道数 # kernel_size: 卷积核大小 super(TCNEncoder, self).__init__() self._input_size = input_size self._output_dim = num_channels[-1] layers = nn.LayerList() num_levels = len(num_channels) # print('print num_channels: ', num_channels) ...
def__init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):super(TemporalConvNet, self).__init__() layers = [] num_levels = len(num_channels)foriinrange(num_levels): dilation_size =2** i in_channels = num_inputsifi ==0elsenum_channels[i-1] out_channels = num...
nr_input_channels和nr_output_channels这两个变量取决于该层在网络中的位置。第一层是nr_input_channels = input_size,最后一层是nr_output_channels = output_size。所有其他层将使用由num_filters提供的中间通道号。 因果卷积 对于因果关系,对于中的每一个i,输出序列的第i个元素可能只依赖于索引为的输入序列中...
nr_input_channels和nr_output_channels这两个变量取决于该层在网络中的位置。第一层是nr_input_channels = input_size,最后一层是nr_output_channels = output_size。所有其他层将使用由num_filters提供的中间通道号。 因果卷积 对于因果关系,对于{0,…,input_length - 1}中的每一个i,输出序列的第i个元素可...
nr_input_channels和nr_output_channels这两个变量取决于该层在网络中的位置。第一层是nr_input_channels = input_size,最后一层是nr_output_channels = output_size。所有其他层将使用由num_filters提供的中间通道号。 因果卷积 对于因果关系,对于{0,…,input_length - 1}中的每一个i,输出序列的第i个元素可...