继承nn.Module: 模型类通常继承自 nn.Module 类。 初始化方法 init: 在这个方法中,定义模型的层(例如线性层、卷积层等)。 前向传播方法 forward: 定义数据通过模型的流动方式 Module初认识 在pytorch中模型是一个Module,各网络层、模块也是Module。Module是所有神经网络的基类,所有的模型都必须继承于Module类,并且...
将CNN/TCN/LSTM/BiGRU-Attention四种多变量回归模型打包到全家桶中,方便大家选择最适合自己数据的模型!日后也会推出其他算法结合注意力机制的模型,如BiTCN-Attention等等,但肯定是会上涨的!所以需要创新或对比的小伙伴请早下手早超生!! 数据介绍 本期采用的数据是经典的回归预测数据集,是为了方便大家替换自己的数据集...
都是Variable类型的。代表各个句子的表示,lstm只会作用到它实际长度的句子,而不是通过无用的padding字符...
到目前为止,深度学习背景下的序列建模主题主要与递归神经网络架构(如LSTM和GRU)有关。在许多任务中,卷...
TCN-LSTM模型由TCN层和LSTM层组成。TCN层负责提取时间序列特征,而LSTM层负责建模长期依赖关系。 TCN层 TCN层由多个卷积层堆叠而成,每个卷积层包含一个因果卷积核和一个ReLU激活函数。因果卷积核确保模型只使用过去的信息进行预测,避免信息泄露。 LSTM层 LSTM层由多个LSTM单元组成,每个LSTM单元包含三个门结构:输入门、...
如果使用LSTM或者是GRU这样的RNN模型,自然是可以处理这样的时间序列模型的,毕竟RNN生来就是为了这个的。 但是这个时间序列模型,宏观上思考的话,其实就是对这个这个时刻之前的数据做某个操作,然后生成一个标签,回想一下在卷积在图像中的操作,其实有异曲同工。(这里不理解也无妨,因为我之前搞了一段时间图像处理,所以...
到目前为止,深度学习背景下的序列建模主题主要与递归神经网络架构(如LSTM和GRU)有关。S. Bai等人(*)认为,这种思维方式已经过时,在对序列数据进行建模时,应该将卷积网络作为主要候选者之一加以考虑。他们能够表明,在许多任务中,卷积网络可以取得比RNNs更好的性能,同时避免了递归模型的常见缺陷,如梯度爆炸/消失问题或缺...
如果使用LSTM或者是GRU这样的RNN模型,自然是可以处理这样的时间序列模型的,毕竟RNN生来就是为了这个的。 但是这个时间序列模型,宏观上思考的话,其实就是对这个时刻之前的数据做某个操作,然后生成一个标签,回想一下在卷积在图像中的操作,其实有异曲同工。(这里不理解也无妨,因为我之前搞了一段时间图像处理,所以对...
Zhang等。后来结合了卷积神经网络(CNN)和递归神经网络(RNN)提出了一种新的体系结构,即广域神经网络(DWNN)。结果表明,与常规RNN模型相比,DWNN模型可以将预测的均方误差降低30%。 Ha等。CNN被用于开发定量股票选择策略,以确定股票趋势,然后使用LSTM预测股票价格,以推广用于定量计时策略的混合神经网络模型,以增加利润。
2 基于CNN-LSTM的回归预测模型 2.1 定义CNN-LSTM网络模型 2.2 设置参数,训练模型 50个epoch,MSE 极小,CNN-LSTM回归预测模型预测效果显著,模型能够充分提取数据特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。 注意调整参数: ...