sum += n;if((sum + S) &1==1|| sum < S)return0; sum = (sum + S) /2;returnsubsetsum(nums, sum); }intsubsetsum(vector<int>& nums,intsum){intdp[sum +1] = {0}; dp[0] =1;for(intn : nums) {for(intj = sum; j >= n; j--) dp[j] += dp[j - n]; }returndp...
classSolution{public:intfindTargetSumWays(vector<int>& nums,ints){intsum =accumulate(nums.begin(), nums.end(),0);returnsum < s || (s + sum) &1?0:subsetSum(nums, (s + sum) >>1); }intsubsetSum(vector<int>& nums,ints){intdp[s +1] = {0}; dp[0] =1;for(intn : nums...
494. Target Sum 原网站为https://leetcode.com/problems/target-sum/description/ 一、题目 You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each ... 494. Target Sum ... 494. Target Sum You are given a ...
Given an integer arrayarrand a target valuetarget, return the integervaluesuch that when we change all the integers larger thanvaluein the given array to be equal tovalue, the sum of the array gets as close as possible (in absolute difference) totarget. In case of a tie, return the min...
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)2* sum(P) = target + sum(nums) 可以看出:如果target + sum(nums)为奇数,那必定可行方法数为0。之后利用 416 Partition Equal Subset Sum中的方法,即可求得数组中求和得到(target + sum(nums))/2的方法数。
findTargetSumWays(vector<int>& nums, int s) { int sum = accumulate(nums.begin(), nums.end(), 0); return sum < s || (s + sum) & 1 ? 0 : subsetSum(nums, (s + sum) >> 1); } int subsetSum(vector<int>& nums, int ...
sum(P) = (S + sum(nums))/2 the original problem has been changed to a subset sum problem: : Find a subsetPofnumssuch thatsum(P) = (target + sum(nums)) / 2 reference: http://bgmeow.xyz/2017/01/29/LeetCode-494/ 1defsubsetSum(nums, target):2dp = [0]*(target+1)3dp[0] ...
1classSolution {2func findTargetSumWays(_ nums: [Int], _ S: Int) ->Int {3varsum:Int =04forninnums5{6sum +=n7}8returnsum < S || (S + sum) %2>0?0: subsetSum(nums, (S + sum) >>1)9}1011func subsetSum(_ nums: [Int], _ S: Int) ->Int12{13vardp:[Int] = [Int]...
https://leetcode.com/problems/target-sum/discuss/97369/Evolve-from-brute-force-to-dp https://leetcode.com/problems/target-sum/discuss/97334/Java-(15-ms)-C%2B%2B-(3-ms)-O(ns)-iterative-DP-solution-using-subset-sum-with-explanation ...
详见:https://leetcode.com/problems/target-sum/description/C++:方法一:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 class Solution { public: int findTargetSumWays(vector<int>& nums, int S) { int res=0; helper(nums,S,0,res);...