tangent vector— 切向量 tangent plane (a surface)— 切平面 查看更多用例•查看其他译文 也可见: tangent名— 切线名 · 正切线名 查看其他译文 © Linguee 词典, 2024 使用DeepL翻译器,即刻翻译文本和文档 随打随译 世界领先的质量 拖放文件
tangent plane切面相切平面 tangent modulus切线模 ,切线模数;正切模 ;地基应力和变形切线模 hyperbolic tangent 正切 arc tangentn. 反正切 loss tangent损耗因数;损耗角正切 tangent space切空间;切丛;切线空间 tangent vector正切向 ,切矢 tangent method切向法;切线法;正切法 ...
Let's think about the tangent plane with regard to a function f. 我们来考虑,关于函数f的一个切平面。 It has a hat because it's a unit vector, and t because it's tangent. 这上面有一个帽子表示它是单位矢量,T表示它是切线。 So, the velocity vector is going to be always tangent to...
Noun1.tangent plane- the plane that contains all the lines tangent to a specific point on a surface plane,sheet- (mathematics) an unbounded two-dimensional shape; "we will refer to the plane of the graph as the X-Y plane"; "any line joining two points on a plane lies wholly on that...
tangent plane切面相切平面 tangent modulus切线模量,切线模数;正切模量;地基应力和变形切线模量 hyperbolic tangent双曲正切 arc tangentn. 反正切 loss tangent损耗因数;损耗角正切 tangent space切空间;切丛;切线空间 tangent vector正切向量,切矢量 tangent method切向法;切线法;正切法 ...
在规则曲面上, \frac{\partial F}{\partial {u}_{j}}\left( p\right) 是 p 处的切向量( tangent\ vector)。在抽象流形( abstract\ manifold)上, \frac{\partial F}{\partial {u}_{j}}\left( p\right) 无法定义,因为 F 可能不在欧氏空间中。相反,偏微分算子 \frac{\partial }{\partial {u}...
1. a geometric line, curve, plane, or curved surface that touches another curve or surface at one point but does not intersect it 2. (of an angle) a trigonometric function that in a right-angled triangle is the ratio of the length of the opposite side to that of the adjacent side;...
tangent plane切面相切平面 tangent modulus切线模量,切线模数;正切模量;地基应力和变形切线模量 hyperbolic tangent双曲正切 arc tangentn. 反正切 loss tangent损耗因数;损耗角正切 tangent space切空间;切丛;切线空间 tangent vector正切向量,切矢量 tangent method切向法;切线法;正切法 ...
tangent plane:切平面 tangent vector:切向量 go off at a tangent:突然离题 at tangent:相切地 词根词缀及记忆方法 词根:“tang-”表示“触摸”。 后缀:“-ent”作为名词后缀,表示“……的人或物”。 记忆方法:将词根“tang-”与后缀“-ent”结合,形成“tangent”,并记住它表示“切线”的意思。同时,可以通过...
Equation of Tangent Plane:Vector operations have some important applications. They are used to evaluate tangent plane to a surface {eq}z = f(x, y) {/eq}. We use partial derivatives to find the normal vector {eq}\vec {n}=\langle \frac{\partial f}{\parti...