Christensen, D.; Wu, E.; Tangent spaces and tangent bundles for diffeological spaces, Cahiers de Topologie et G´eom´etrie Diff´erentielle (to appear).J.D. Christensen and E. Wu, Tangent spaces and tangent bundles for diffeological spaces, to appear in Cahiers de Topologie et ...
A Tangent bundle on diffeological spaces - Torre - 1998 () Citation Context ...ps [1,2]. A tangent structure was defined in [7] for coadjoint orbits of diffeomorphisms groups, allowing a geometric definition of a differential form as a section of the corresponding vector bundle =-=[5,...
We study how the notion of tangent space can be extended from smooth manifolds to diffeological spaces, which are generalizations of smooth manifolds that include singular spaces and infinite-dimensional spaces. We focus on two definitions. The internal tangent space of a diffeological space is de...
We study how the notion of tangent space can be extended from smooth manifolds to diffeological spaces, which are generalizations of smooth manifolds that include singular spaces and infinite-dimensional spaces. We focus on two definitions. The internal tangent space of a diffeological space is de...