dudx=2sec(2x)tan(2x)+2sec2(2x) Step 4: Substitute back into the derivative formulaNow substituting u and dudx back into the derivative formula:dydx=1sec(2x)+tan(2x)⋅(2sec(2x)tan(2x)+2sec2(2x)) Step 5: Factor out the common termsFactoring out the common factor of 2:dydx=2(...
\int_0^\frac{\pi}{4} \tan^3 x \sec x dx Express \ln 0.375 in terms of \ln 2 \enspace or \enspace \ln 3 Let z= x + iy. Express the given quantity in terms of x and y. \left | z -i \right | = \left | z - 1 \right | ...
ARCSEC ARCSHS ARCSI ARCSIN ARCSIP ARCSS ARCST ARCSU ARCSYM ARCT ARCTAN ARCTAS ARCTIC ARCTS ARCTT ARCTU ARCU ARCUA ARCUE ARCUK ARCUP ARCUS ARCV ARCVLSC ARCW ARCWIS ARCYBER ARD ARD1 ARDA ARDAC ARDAR ARDASI ARDAWG ARDB ARDC
Answer to: Simplify the trigonometric expression (sec(x) + csc(x))(sin(x)+ cos(x)) - 2 - cot(x) by writing the simplified form in terms of tan(x)...
百度试题 结果1 题目 3. Given that tan A = t and that A is acute, find in terms of t,(a) sin A,(b) sec A, (c) tan(90°-A) ,(d) tan(A-90°) . 相关知识点: 试题来源: 解析 (a) (b) (c) (d) 反馈 收藏
5secθ−5tanθ=3secθ+3tanθ Step 3: Rearrange the equation. Now, we can rearrange the equation to group the terms involving secθ and tanθ: 5secθ−3secθ=5tanθ+3tanθ This simplifies to: 2secθ=8tanθ Step 4: Solve for secθ in terms of tanθ. Dividing both sides by...
Rewrite the tangent function in terms of the exponential function: rewrite(tan(x), 'exp') ans = -(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1) Evaluate Units with tan Function tan numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution. Show this ...
https://www.quora.com/What-is-the-integral-of-e-ax-tan-bx Integration of this in basic trigonometric functions is not possible, here is the solution in terms hyper-geometric function ∫eaxtan(bx)=−a(a+2ib)1i(ae(a+2ib)2F1(1,1−2bia;2−2bia;−e2ibx)−(a+2ib)eax2F1...
1) Differentiat e tan(2X+1) with respect to X(好像是对tan(2X+1)求导)2) Explain why the$$ c u r v e Y = \tan ( 2 X + 1 ) h a s $$o stationary points.(好像是说解释为什么这条曲线没有定点)3) Find, in terms of p,th e approximat e change in tan(2X+1) as X ...
This technique is often used when the integrand appears to contain a compostion of functions. When u is substituted into the integral, du should also be substituted. Answer and Explanation: The integrand in this problem {eq}\displaystyle \int \sec(2t) \tan(2t) \ \mathrm{d}t {/eq} ...