The value of tan 90 degrees is undefined. The tangent of an angle is equal to the ratio of sine and cosine of the same angle. Learn how to derive the exact value of tan 90 at BYJU’S.
The value of arctan 1 is 45° or π/4 radians. What is the arctan of the √3? The exact value of arctan(√3) is 60° or π/3. Since tan(60°) = √3 and arctan is the inverse tan function, arctan(√3) will be 60°. How can I draw the graph of arctan? To draw ...
Find the exact value of 2 sin (pi / 3) - 3 tan (pi / 6). Use the figure to find the exact value of tan (\dfrac{\theta}2). Find the value of \tan 2x: (\frac{\pi}{2}) Find the exact value of tan^(-1) (tan 6 pi/5). ...
. The value oftan40∘+2tan10∘is View Solution Write the value oftan10∘tan15∘tan75∘tan80∘. View Solution The value of(tan10∘+tan35∘)+tan10∘tan35∘is View Solution Find the value ofcot25∘+cot55∘tan25∘+tan55∘+cot55∘+cot100∘tan55∘+tan100∘...
What is the exact value of tan15∘ ? https://socratic.org/questions/596d6008b72cff2ed90fbbd1 tan15=2−3 Explanation: Use trig identity: tan2a=1−tan2a2tana In this case tan2a=tan30=31 ... What is tan50∘ https://math.stackexchange.com/q/832677 Is there a better approach...
Find the Exact Value tan(8/2) ( (tan)(8/2)) 相关知识点: 试题来源: 解析 Divide( 8) by ( 2). ( (tan)(4)) Evaluate( (tan)(4)). ( 0.06992681) The result can be shown in multiple forms. Exact Form: ( (tan)(8/2)) Decimal Form: ( 0.06992681… )...
Question: Find the exact value of each expression. (a)tan(arctan10) (b)sin−1(sin(7π/3)) Inverse Trigonometric Functions: The basic trigonometric functions aresin,cos,tan,cot,sec,andcsc. The inverse of these trigonometric functions are simply termed arc function...
百度试题 结果1 题目Find the exact value tan((7π)4 ) = ___ 相关知识点: 试题来源: 解析 -1 反馈 收藏
Q.Find the Exact value of Sin 15 using trigonometry table values. Answer-sin15° can be written as, sin(45° -30°) sin15°= sin(45° -30°)= sin45° cos30°-cos45°sin30°, [using sin(X-Y)=sinXcosY-cosXsinY] or,sin15° = (1/√2×√3/2)- (1/2×1/√2) { using ...
tan(2θ) = 2sin(θ)cos(θ)/(cos2(θ) - sin2(θ)) We know sin(θ) = -2√13/13 = opposite/hypotenuse = y/h We need cos(θ) = adjacent/hypotenuse = x/h x = √(132 - (-2√13)2) = √(169 - 52) = 3√13 cos(θ) = 3√13/13 tan(2θ) = 2(-2√13...