alpha+beta=pi/2 এবং beta+gamma=alpha হলে tanalpha-এর মান হবে-
正切函数的诱导公式(1)$$ \tan ( 2 \pi + \alpha ) = \tan \alpha $$ ;(2)$$ \tan ( - \alpha ) = - \tan \alpha $$(3)$$ \tan ( 2 \pi - \alpha ) = - \tan \alpha $$(4)$$ \tan ( \pi - \alpha ) = - \tan \alpha $$;(5)$$ \tan ( \pi + \alpha...
【解析】 答案: $$ ( 1 ) \tan \alpha ; ( 2 ) - \tan \alpha ; ( 3 ) - \tan \alpha ; ( 4 ) - \tan \alpha ; ( 5 ) \tan \alpha $$ 分析: (1)$$ \tan ( 2 \pi + \alpha ) = \tan \alpha $$ (2)$$ \tan ( - \alpha ) = - \tan \alpha , $$ (3)$$...
If alpha=(2 pi)/(7) then tan alpha tan^(7)2 alpha+tan2 alpha tan4 alpha+tan2 alpha tan4 alpha= View Solution [[1,-tan((alpha)/(2))tan((alpha)/(2)),1]][[1,-tan((alpha)/(2))tan((alpha)/(2)),1]] View Solution If alpha=(2 pi)/(7), then tan alpha tan2 alpha+...
【解析】∵α是第二象限的角,$$ \tan ( \pi + 2 \alpha ) = \tan 2 \alpha = - \frac { 4 } { 3 } $$ , ∴$$ \frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha } = - \frac { 4 } { 3 } $$, 解得:$$ \tan \alpha = - \frac { 1 } { 2 } ...
14.【解析】由$$ \tan ( \pi + 2 \alpha ) = - \frac { 4 } { 3 } $$得$$ \tan 2 \alpha = - \frac { 4 } { 3 } $$, 又$$ \tan 2 \alpha = \frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha } = - \frac { 4 } { 3 } , $$ 解得$$ \tan...
- \alpha , \pi \pm \alpha $$的诱导公式(1)$$ \tan ( 2 \pi + \alpha ) = \_ $$(2)$$ \tan ( - \alpha ) = \_ ; $$(3)$$ \tan ( 2 \pi - \alpha ) = \_ $$(4)$$ \tan ( \pi - \alpha ) = \underline { } ; $$(5)$$ \tan ( \pi + \alpha ) = ...
解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.相关知识点: 试题来源: 解析 答案:-43 解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.反馈...
【解析】 解:(1) $$ \sin 2 \alpha = 2 \sin \alpha \cos \alpha = 2 \cdot \frac { 1 } { \tan \alpha + \frac { 1 } { \tan \alpha } } = 2 \times \frac { 1 } { 2 + \frac { 1 } { 2 } } = \frac { 4 } { 5 } $$ , $$ \cos 2 \alpha = \cos ^ {...
\alpha } { \left[ - \tan ( \pi - \alpha ) \right] ( - \tan \alpha ) \left[ - \tan ( \pi + \alpha ) \right] } $$ $$ \frac { \tan \alpha \cdot \tan \alpha } { \tan \alpha ( - \tan \alpha ) ( - \tan \alpha ) } = \frac { 1 } { \tan \alp...