tan(alpha+beta)=2 tan(alpha-beta)=1 tan2alpha=tan[(alpha+beta)+(alpha-beta)] =(tan(alpha+beta)+tan(alpha-beta))/(1-tan(alpha+beta).tan(alpha-beta)) =(2+1)/(1-2.1)=(3)/(-1)=-3
The expression (tan alpha+tan beta)cot(alpha+beta)+(tan alpha-tan beta)cot(alpha-beta) is independent of both alpha and beta. View Solution Prove that (tan alpha+tan beta)/(cot alpha+cot beta)=tan alpha tan beta View Solution Iftanα+tanβcotα+cotβ+{cos(α−β)+1}−1=1,t...
\beta } k \pi + \frac { \pi } { 2 } , k \in Z $$ [思考探究] 1.提示 不一定有意义.如$$ \alpha = \beta = \frac { \pi } { 4 } $$,此时tana,tanβ均有意义, 但$$ \alpha + \beta = \frac { \pi } { 2 } $$,此时函数$$ \tan ( \alpha + \beta ) $$无...
1. 两角和与差的正切公式(1)$$ \tan ( \alpha + \beta ) = \_ $$其中α,β$$ \alpha + \beta \neq $$$ k \pi + \frac { \pi } { 2 } ( k \in Z ) ; $$(2)$$ \tan ( \alpha - \beta ) = 其 $$其中α,β,$$ \alpha - \beta \neq $$$ k \pi + \frac...
( \alpha + \beta ) } $$的正切$$ k \pi + \frac { \pi } { 2 } ( k \in Z ) $$两角差$$ \tan ( \alpha - \beta ) \alpha , \beta , \alpha - \beta \neq $$=2$$ T _ { ( \alpha - \beta ) } $$的正切$$ k \pi + \frac { \pi } { 2 } ( k \in Z )...
Step by step video & image solution for If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=tanalphatanbetatangamma, then (secalpha-tanalpha)(secbeta-tanbeta)(secgamma-tangamma)= by Maths experts to help you in doubts & scoring excellent marks in Class 11 exams.Updated on:21/...
tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha View Solution यदिsin(α−β)=1,sin(α−β)=1/2तबtan(α−2β)tan(2α+β)बराबर है| View Solution ...
1. $$ \frac { \tan \alpha + \tan \beta } { 1 - \tan \alpha \tan \beta } $$2. $$ \frac { \tan \alpha - \tan \beta } { 1 + \tan \alpha \tan \beta } $$ 思考 解:$$ \frac { \tan \alpha + \tan \beta } { 1 - \tan \alpha \tan \beta } = \ta...
tan \alpha \cdot \tan \beta \neq 1 $$___两角差$$ \tan ( \alpha - \beta ) = , \beta , \alpha - \beta \neq k \pi + \frac { \pi } { 2 } ( k \in Z ) $$$ T _ { ( \alpha - \beta ) } $$的正切 ___$$ 且 \tan \alpha \cdot \tan \beta \neq - 1 $...
4.常见公式的变形(1)两角和与差的正切公式的变形$$ \tan \alpha + \tan \beta = \tan ( \alpha + \beta ) ( 1 - \tan \alpha \tan \beta ) ; $$$ \tan \alpha - \tan \beta = \textcircled { 5 } \_ . $$(2)升幂公式$$ 1 + \cos \alpha = 2 \cos ^ { 2 } \fra...