Scaling Instruction-Finetuned Language Models 论文发布了 FLAN-T5 模型,它是 T5 模型的增强版。FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-...
deepspeed --num_gpus=8 scripts/run_seq2seq_deepspeed.py --model_id google/flan-t5-xxl --dataset_path data --epochs 3 --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --generation_max_length 129 --lr 1e-4 --deepspeed configs/ds_flan_t5_z3_config_bf16.json DeepSpe...
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。 在之前的一篇博文中,我们已经学习了如何针对聊...
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。 Scaling Instruction-Finetuned Language Model...
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。 Scaling Instruction-Finetuned Language ...
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。