武当和峨眉三个门派。我们使用 t-SNE 将数据降维到二维,并可视化其结果。不同颜色表示不同的门派,从图中可以看到,同一门派的武侠人物在降维后的二维空间中聚集在一起,而不同门派的武侠人物则分布在不同的区域。
现在回到t-SNE,我们使用t-SNE是为了将高维数据用低维数据来表达,以便能够可视化。那么这里就涉及到2种分布,一个是高维数据的分布p,一个是低维数据的分布q,想让低维数据能够最好的表达高维的情况,就可以将K-L散度公式做为损失函数,通过最小化散度来学习出q分布下的各样本点。 目标函数: 其中: p分布是基于高...
我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化高维数据。简而言之,t-SNE为我们提供了数据如何在高维空间中排列的感觉或直觉。它由Laurens van der Maatens和Geoffrey Hinton于2008年开发。一提到降维,...
T-distributed Stochastic Neighbor Embedding (T-SNE) 是一种可视化高维数据的工具。T-SNE 基于随机邻域嵌入,是一种非线性降维技术,用于在二维或三维空间中可视化数据 Python API 提供 T-SNE 方法可视化数据。在本教程中,我们将简要了解如何在 Python 中使用 TSNE 拟合和可视化数据。教程涵盖: 鸢尾花数据集TSNE拟合...
t-SNE是一种非线性降维方法,用于将高维数据点降至低维空间中,并保留数据点之间的局部关系。这种方法特别适合于可视化高维数据,因为它能够揭示出数据中的复杂模式和结构。本文将介绍如何使用t-SNE进行数据降维,并展示其在2维和3维空间中的可视化结果。一、t-SNE算法基本原理t-SNE算法的基本思想是将高维数据点视为...
check_duplicates = FALSE,检查是否存在重复项。最好确保在进行t-SNE之前数据不存在重复项,并将此选项设置为FALSE。 ③ 输出结果是一个列表,其中元素Y就是降维结果。可以看到原来10个基因的表达数据(10维数据),已经降为二维数据。 5. 降维结果可视化
check_duplicates = FALSE,检查是否存在重复项。最好确保在进行t-SNE之前数据不存在重复项,并将此选项设置为FALSE。 ③ 输出结果是一个列表,其中元素Y就是降维结果。可以看到原来10个基因的表达数据(10维数据),已经降为二维数据。 5. 降维结果可视化
1.1 什么是 t-SNE t-SNE 是一种非线性降维技术,用于将高维数据映射到低维空间,以便进行可视化。它通过保持高维空间中数据点之间的局部相似性来生成低维空间的表示。这种方法特别适用于揭示复杂数据集中的模式和结构 1.2 t-SNE 的核心思想 t-SNE 的核心思想是通过两步过程实现高维到低维的映射。首先,t-SNE 在高...
t-SNE是目前来说效果最好的数据降维与可视化方法,但是它的缺点也很明显,比如:占内存大,运行时间长。但是,当我们想要对高维数据进行分类,又不清楚这个数据集有没有很好的可分性(即同类之间间隔小,异类之间间隔大),可以通过t-SNE投影到2维或者3维的空间中观察一下。如果在低维空间中具有可分性,则数据是可...
第5步-t-SNE降维与可视化 (1)导入所需的库 from sklearn.manifold import TSNE (2)t-SNE降维 tsne = TSNE(n_components=2) tsne.fit(X_std) (3)可视化t-SNE降维分类结果 X_tsne = pd.DataFrame(tsne.fit_transform(X_std)).rename(columns={0:'dim1', 1:'dim2'}) ...