在基本实现中,我们生成了一个包含武侠人物特征和门派标签的数据集。数据集中的武侠人物分别来自少林、武当和峨眉三个门派。我们使用 t-SNE 将数据降维到二维,并可视化其结果。不同颜色表示不同的门派,从图中可以看到,同一门派的武侠人物在降维后的二维空间中聚集在一起,而不同门派的武侠人物则分布在不同的区域。
通过上述步骤迭代优化,t-SNE 最终可以得到一个低维空间中的表示,使得高维数据的局部相似性在低维空间中得以保留 4. t-SNE 的代码示范 在这部分,我们将生成一个带有武侠风格的数据集,包含三个门派的武侠人物。数据集的特征包括武力值、智力值和身法值。我们将使用 t-SNE 进行降维,并展示其可视化效果。接下来,我...
图像数据:在MNIST数据集上应用t-SNE,可以直观地看到不同数字的聚类情况,帮助理解数字分类的特征分布。 基因表达数据:在生物信息学中,t-SNE 被广泛用于基因表达数据的可视化,揭示不同基因之间的相似性和差异。 文本数据:通过t-SNE 将高维词向量映射到低维空间,展示文本数据的语义聚类。 每个实例都展示了t-SNE 在保...
t-SNE的主要用途是可视化和探索高维数据。它由Laurens van der Maatens和Geoffrey Hinton开发和出版。t-SNE的主要目标是将多维数据集转换为低维数据集。这是最好的降维技术之一,特别是对于数据的可视化。如果我们将t-SNE应用于n维数据,它将智能地将n维数据映射到3d甚至2d数据,并且与原始数据具有非常好的相对相似性...
由于毕业设计有部分工作需要对比两个图像数据集合的差异,为了可视化差异,利用了目前降维首选的t-SNE。我花了点时间看了sklearn里面关于这部分的文档,也查阅了相关博客,最终成功的将两种图片数据集作了一个可视化的对比。我觉得这个方法很硬核而且还蛮有意思的,利用python sklearn库也很容易实现,加上很多教程都是仅仅列...
使用t-SNE做降维可视化 最近在做一个深度学习分类项目,想看看训练集数据的分布情况,但由于数据本身维度接近100,不能直观的可视化展示,所以就对降维可视化做了一些粗略的了解以便能在低维空间中近似展示高维数据的分布情况,以下内容不会很深入细节,但足以让你快速使用这门技术。
尽管t-SNE对于可视化高维数据非常有用,但有时其结果可能无法解读或具有误导性。通过探索它在简单情况下...
t-SNE是目前来说效果最好的数据降维与可视化方法,但是它的缺点也很明显,比如:占内存大,运行时间长。但是,当我们想要对高维数据进行分类,又不清楚这个数据集有没有很好的可分性(即同类之间间隔小,异类之间间隔大),可以通过t-SNE投影到2维或者3维的空间中观察一下。如果在低维空间中具有可分性,则数据是可...
高维数据集的可视化 经典案例-MNIST手写数字降维可视化 MNIST 原始数据大小: 60000 * 784,每个数据 784 维 2D-t-SNE后为: 60000 x 2 3D-t-SNE后为: 60000 x 3 可见,把 784 维数据(图像大小 28x28,拉直后为784,对 MNIST 不了解请百度)降成 2 维或 3 维是很大程度上的压缩。降维后的结果如图所示。
t-SNE的主要目标是将多维数据集转换为低维数据集。相对于其他的降维算法,对于数据可视化而言t-SNE的效果最好。如果我们将t-SNE应用于n维数据,它将智能地将n维数据映射到3d甚至2d数据,并且原始数据的相对相似性非常好。与PCA一样,t-SNE不是线性降维技术,它遵循非线性,这是它可以捕获高维数据的复杂流形结构的主要...