本发明公开一种共享权重长短期记忆网络(SWLSTM)结合高斯过程回归(GPR)的风速预测方法,该方法主要包括:采用共享权重来简化标准长短期记忆网络(LSTM)的结构;利用结合了minibatch机制的Adam优化算法来训练SWLSTM,得到具有高准确率的风速点预测结果;将SWLSTM得到的点预测结果作为GPR的输入,二次预测得到风速概率预测结果;选定...
本发明公开一种共享权重长短期记忆网络(SWLSTM)结合高斯过程回归(GPR)的风速预测方法,该方法主要包括:采用共享权重来简化标准长短期记忆网络(LSTM)的结构;利用结合了mini‑batch机制的Adam优化算法来训练SWLSTM,得到具有高准确率的风速点预测结果;将SWLSTM得到的点预测结果作为GPR的输入,二次预测得到风速概率预测结果;...