SwinTransformer 是微软亚洲研究院在2021年提出的适用于CV领域的一种基于Tranformer的backbone结构。 它是Shift Window Transformer 的缩写,主要创新点如下。 1,分Window进行Transformer计算,将自注意力计算量从输入尺寸的平方量级降低为线性量级。 2,使用Shift Window 即窗格偏移技术 来 融合不同窗格之间的信息。(SW-...
为了解决这样的问题,作者在这篇文章中提出一种称为Swin Transformer新型Vision Transformer。Swin Transformer使用允许跨窗口连接的移动窗口将自注意力限制在不重叠的局部窗口上计算表示,其提出的层次结构具有不同尺度上图像上建模的灵活性,在各种视觉任务上取得优秀的结果,有望在计算机视觉领域取代CNN成为一种通用框架。 一...
from timm.models.swin_transformer_v2 import swinv2_tiny_window8_256 torch.backends.cudnn.benchmark = False import warnings warnings.filterwarnings("ignore") from ema importEMA 设置全局参数 设置学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。建议使用GPU,CPU太慢了。 if __...
1)残差后范数方法结合余弦注意提高训练稳定性; 2)一种对数空间连续位置偏差方法,可有效地将使用低分辨率图像预训练的模型转移到具有高分辨率输入的下游任务; 3)一种自我监督的预训练方法SimMIM,以减少对大量标记图像的需求。 我这篇文章主要讲解如何使用Swin Transformer V2完成图像分类任务,接下来我们一起完成项目的实...
因此学习Swin-Transformer源码及其使用,记录如下。 1 Run Swin-T python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 main.py --cfg configs/swin/swin_tiny_patch4_window7_224.yaml --data-path data --batch-size 128 ...
在输入进Swin Transformer Block前,需要将图片切成一个个 patch,然后嵌入向量。 具体做法是对原始图片裁成一个个window_size*window_size的窗口大小,然后进行嵌入。 这里可以通过二维卷积层,将stride,kernel_size设置为window_size大小。设定输出通道来确定嵌入向量的大小。最后将 H,W 维度展开,并移动到第一维度。这里...
在VIT中同样用了position embedding,经对比还是使用可训练的一维embedding好一点 最后用class token这个状态量做分类任务 将图片分成固定大小的块,用线性网络得到嵌入式表征,再加入位置编码,将一系列的向量送入到标准transformer中。 图片大小可能会变换,但是块的大小是不会变的,反应的只是序列长度大一些。
官网地址:https://github.com/microsoft/Swin-Transformer 2. 网络框架 2.1 swim VS vit 从图中可以得到,Swin相较于ViT的区别在于:Swim模型的特征图具有层次性,随着特征层加深,特征图的高和宽逐渐变小(4倍、8倍和16倍下采样); **注:**所谓下采样就是将图片缩小,就类似于图片越来越模糊(打码),像素越来越少...
从Swin Transformer的官方仓库获取模型,由于是基于PyTorch训练,导出的是原始的pth模型格式,而对于部署的同学而言,更喜欢使用ONNX模型进行后续的产品落地,为了方便测试,我们提供该模型的ONNX版本导出脚本,降低模型获取门槛,便于之前不熟悉的同学直接掌握其中的关键操作。