MSRA时隔大半年放出了Swin Transformer 2.0版本,在1.0版本的基础上做了改动,使得模型规模更大并且能适配不同分辨率的图片和不同尺寸的窗口!这也证实了,Transformer将是视觉领域的研究趋势! 01 前言 Swin Transformer V2的目标是什么?存在什么问题? 论文中不止一次提到Swin Transformer V2和 V1一样,最终
Swin Transformer是一个通用的计算机视觉主干网络,它在各种粒度的识别任务上都有很强的性能,包括区域级的目标检测、像素级的语义分割和图像级的图像分类。Swin Transformer的主要思想是将几个重要的视觉信号先验引入到vanilla Transformer编码器结构中,包括层次性、局部性和平移不变性,这结合了两者的优点:基本Transformer单元...
MSRA的Swin Transformer V2 解决了CV中模型不够大,不适配的问题,并通过实验证明了SwinV2-G可以作为预训练模型迁移到不同的视觉任务当中,这一点是值得肯定的,相比较于NLP,CV在某些地方是要滞后一点,FAIR的MAE和MSRA的Swin V2都在追赶NLP的发展进度,我感觉MSRA在Swin上做的一系列工作都想让它成为视觉通用模型,在实...
Swin Transformer V2: Scaling Up Capacity and Resolution 作者:elfin 资料来源:Swin V2 论文地址: https://arxiv.org/abs/2111.09883 如V2名字所言,这里增大了模型的冗余和输入的分辨率! V1论文解析
Swin Transformer是ICCV 2021的最佳论文,它之所以有这么大的影响力,是因为在ViT之后,swin transformer凭借在一系列视觉任务上的出色表现,进一步证明了transformer是可以在视觉领域广泛应用的。此外,作者团队也发布了一系列基于swin transformer的工作,比如自监督版本的MoBY、视频领域的video-swin-transformer、应用swin思想的MLP...
1. 论文和代码地址 Swin Transformer V2: Scaling Up Capacity and Resolution 论文地址:https://arxiv.org/abs/2111.09883 代码地址:尚未开源 2. Motivation 扩大语言模型的规模已经取得了成功。它显著地提高了模型在语言任务上的表现,并且该...
如V2名字所言,这里增大了模型的冗余和输入的分辨率! V1论文解析参 V1主要的贡献是shifted window,transformer部分也加入了图像的相对位置偏置,为什么是相对位置偏置,这个问题在NLP方向有足够的研究表面相对位置比绝对位置work的更好。位置信息对于transformer这种结构至关重要,因为它对序列位置不敏感,这是结构设计上的硬伤...
downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model...
swin transformer v2结构 Swin Transformer v2 Structure Swin Transformer v2 is an updated version of the Swin Transformer architecture, which is a convolutional neural network (CNN) designed for image recognition and computer vision tasks. This article will discuss the structure of the Swin Transformer ...
论文: Swin Transformer V2: Scaling Up Capacity and Resolutionarxiv.org/abs/2111.09883 论文试图解决什么问题? swin transformer v2的目标是得到一个大规模的预训练模型(30亿参数),可以应用到其他的视觉任务(分割、检测、视频动作分类),作为通用CV模型,并取得高精度效果。 2. 这是否是一个新的问题? 不是。