一、原始Transformer中的mask机制 self-attention,可以理解为:以某一特征 hi 和其它所有特征 hj(j=1,2,...,L) 的相似度作为权重 aij(j=1,2,...,L) ,完成加权平均 Σjaij⋅hj。 在原始Transformer中,我们要处理的是一个长为 L 的一维序列。在某些NLP任务中,比如说机器翻译中译英,一般使用的是Encoder...
mask通过在对应位置加上-infinite实现 与$v$矩阵点成后得到的尺寸为B\cdot n\times h\times wH\cdot wW\times \frac{C}{h},先torch.transpose(1, 2)转置再reshape后尺寸为B\cdot n\times wH\cdot wW\times C,最后送入第二个Linear中 总而言之,此处的attention最终公式为: attention = \mathrm{softmax}...
最终Mask就是上图所示。阴影部分给的0,不要的给的-100。因为softmax是取exp,exp越小越接近于0.一...
官方地址:https://github.com/SwinTransformer/Swin-Transformer-Object-Detection 查看源码,发现Swin Transformer并不是作为一套单独的算法进行使用,而是嵌入在mask_rcnn算法中,作为该算法的backbone。(当然,也可以使用别的算法,只是该仓库目前仅实现了mask_rcnn和cascade_mask_rcnn) 因此,有必要先对Mask R-CNN算法做...
如何将swin transformer加到maskrcnn swin transformer unet,SwinTransformerSwintransformer是一个用了移动窗口的层级式(Hierarchical)transformer。其像卷积神经网络一样,也能做block以及层级式的特征提取。本篇博客结合网上的资料,对该论文进行学习。摘要本篇论文提
(2)mask (3)还原shift 6.PatchMerging 7.分层计算(执行后续的Block) 8.输出层 Swim Transformer是特为视觉领域设计的一种分层Transformer结构。Swin Transformer的两大特性是滑动窗口和层级式结构。 1.滑动窗口使相邻的窗口之间进行交互,从而达到全局建模的能力。
之前在看Swin Transformer的时候,发现该算法在目标检测、实例分割等各种视觉任务上屠榜,于是想来实践测试一下。 官方地址:https://github.com/SwinTransformer/Swin-Transformer-Object-Detection 查看源码,发现Swin Transformer并不是作为一套单独的算法进行使用,而是嵌入在mask_rcnn算法中...
Swin Transformer应用了“循环移位”技术(上面动画中的第2步),它将“孤立的”patch移动到带有不完整patch的窗口中。在这次移位之后,一个窗口可能会由原始feature map中不相邻的patch组成,因此在计算过程中应用了一个mask,将自注意力限制在相邻的patch上。
暂不考虑mask的情况,剩下就是跟transformer一样的softmax,dropout,与V矩阵乘,再经过一层全连接层和dropout Shifted Window Attention 前面的Window Attention是在每个窗口下计算注意力的,为了更好的和其他window进行信息交互,Swin Transformer还引入了shifted window操作。
一、研究背景 Motivation:ViT的提出证明了在NLP领域中“大杀四方”的Transformer结构同样可以应用于视觉领域...