一、原始Transformer中的mask机制 self-attention,可以理解为:以某一特征 hi 和其它所有特征 hj(j=1,2,...,L) 的相似度作为权重 aij(j=1,2,...,L) ,完成加权平均 Σjaij⋅hj。 在原始Transformer中,我们要处理的是一个长为 L 的一维序列。在某些NLP任务中,比如说机器翻译中译英,一般使用的是Encoder...
mask通过在对应位置加上-infinite实现 与$v$矩阵点成后得到的尺寸为B\cdot n\times h\times wH\cdot wW\times \frac{C}{h},先torch.transpose(1, 2)转置再reshape后尺寸为B\cdot n\times wH\cdot wW\times C,最后送入第二个Linear中 总而言之,此处的attention最终公式为: attention = \mathrm{softmax}...
最终Mask就是上图所示。阴影部分给的0,不要的给的-100。因为softmax是取exp,exp越小越接近于0.一...
2.层级式结构的好处在于不仅灵活的提供各种尺度的信息,同时还因为自注意力是在窗口内计算的,所以它的计算复杂度随着图片大小线性增长而不是平方级增长,这就使Swin Transformer能够在特别大的分辨率上进行预训练模型,并且通过多尺度的划分,使得Swin Transformer能够提取到多尺度的特征。也因此被人成为披着transformer皮的CNN。
官方地址:https://github.com/SwinTransformer/Swin-Transformer-Object-Detection 查看源码,发现Swin Transformer并不是作为一套单独的算法进行使用,而是嵌入在mask_rcnn算法中,作为该算法的backbone。(当然,也可以使用别的算法,只是该仓库目前仅实现了mask_rcnn和cascade_mask_rcnn) ...
如何将swin transformer加到maskrcnn swin transformer unet,SwinTransformerSwintransformer是一个用了移动窗口的层级式(Hierarchical)transformer。其像卷积神经网络一样,也能做block以及层级式的特征提取。本篇博客结合网上的资料,对该论文进行学习。摘要本篇论文提
Swin Transformer object detection比mask rcnn好吗 transformer中的mask,0简述Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提升模型准确率。
Swin Transformer是2021年微软研究院发表在ICCV上的一篇文章,问世时在图像分类、目标检测、语义分割多个领域都屠榜。 根据论文摘要所述,Swin Transformer在图像分类数据集ImageNet-1K上取得了87.3%的准确率,在目标检测数据集COCO上取得了58.7%的box AP和51.1%的mask AP,在语义分割数据集ADE20K上去的了53.5%的mIoU。
实例分割在COCO上刷到51.1 Mask AP(目前第一)语义分割在ADE20K上刷到53.5 mIoU(目前第一)论文: https://arxiv.org/abs/2103.14030 代码: https://github.com/microsoft/Swin-Transformer 最近Transformer的文章眼花缭乱,但是精度和速度相较于CNN而言还是差点意思,直到Swin Transformer的出现,让人感觉到了...
一、研究背景 Motivation:ViT的提出证明了在NLP领域中“大杀四方”的Transformer结构同样可以应用于视觉领域...