Swin Transformer这种方法的优势是减少了原来Vision Transformer的复杂度,并且引入了局部信息,对于多尺度的问题更好(例如分割,检测)。 其结构如下图所示。与传统 Transformer 模型的主要区别在于 patch merging和shifted window attention机制。结构如下图所示。 Swin Transformer结构图 图中的Patch Partition和原来的ViT类似...
每个Stage里面包含一个Swin Transformer Block和Patch Merging。每一个Swin Transformer Block x2 的意思是由1个W-MSA(Window Multi Self-Attention)和1个SW-MSA(Shifted Window Multi Self-Attention)组成。x6 顾名思义就是3组W-MSA和SW-MSA组成。 Swin Transformer模型结构2:蓝色都是模型的一些网络结构层。立方体...
其中Transformer Blocks详细结构如下图: 1.得到各Pathch特征构建序列 输入图像数据为(224,224,3),通过卷积得到特征图,特征图分块转成向量,得到每个patch,每个patch带编码。 defforward(self, x): B, C, H, W = x.shape# FIXME look at relaxing size constraintsassertH == self.img_size[0]andW == s...
Swin Transformer的基础架构示意图 Swin Transformer中最重要的模块是基于移动窗口构建的注意力模块,其内部结构如下图所示,包含了一个基于移动窗口的多头自注意力模块(shifted windows multi-head self attention, SW-MSA)和基于窗口的多头自注意力模块(W-MSA),其他的归一化层和两层的MLP与原来保持一致,并使用了GELU...
最右边两个图为Swim Transformer的每个块结构,类似于ViT的块结构,其核心修改的地方就是将原本的MSA变为W-MSA。 左边展示的为Swim模型的整个处理流程为:输入(H, W, 3)维的彩色图片,首先执行Patch Partition,特征维度变为(W/4, H/4, 48);接着,连续执行Stage1、Stage2、Stage3和Stage4(注意每个Stage下面有个...
1. Swin Transformer 的基本结构 Swin Transformer 采用了分层结构,每一层有一个固定大小的窗口,通过窗口内的自注意力计算特征。Swin Transformer 的主要模块包括:Patch Partition:将输入图像划分为不重叠的Patch。Linear Embedding:将每个Patch映射到一个高维向量空间。Swin Transformer Block:窗口化的多头自注意力(...
Transformer在视觉领域的应用挑战相比于自然语言处理主要体现在两方面,其一是图像领域的实体尺度变化剧烈在目标检测任务中尤其如此,而现有transformer架构固定的token尺度无法适应如此大范围变化的目标尺寸;其二是图像的像素分辨率远远高于文本中的单词,像语义分割这样涉及像素级稠密预测的视觉任务,Transformer中自注意力机制会...
首先给出整体架构,从图中可以看到,与PVT网络相同,其分为4个阶段(每个阶段的输出特征图皆不相同。除第一阶段外,每个阶段都有一个Patch Merging模块,该模型块的作用便是用于缩减特征图,因为Transformer在进行计算时是不会改变特征图大小的,那么要获取多尺度特征,就需要Patch Merging模块了,这里的patch的作用,与PVT中...
Swin Transformer中最重要的模块是基于移动窗口构建的注意力模块,其内部结构如下图所示,包含了一个基于移动窗口的多头自注意力模块(shifted windows multi-head self attention, SW-MSA)和基于窗口的多头自注意力模块(W-MSA),其他的归一化层和...
1.Swin Transformer整体结构 先看模型整体结构,论文中的结构图跟代码有削微的差别,我以代码为准重画了结构图。因为原版FaceNet的输入是160x160,输出是128x128,所以我将输入改为了160x160,输出层加了全连接层将768映射成128. 图1 整个模型采取层次化的设计,一共包含4个Stage,每个stage都会缩小输入特征图的分辨率,...