微软亚洲研究院升级了 Swin Transformer,新版本具有 30 亿个参数,可以训练分辨率高达 1,536×1,536 的图像,并在四个具有代表性的基准上刷新纪录。 在不久之前公布的 ICCV 2021 论文奖项中,来自微软亚洲研究院的研究者凭借论文《Swin Transformer: Hierarchical Vision Transformer using ShiftedWindows》斩获 ICCV 2021...
通过结合这两种策略,作者训练了一个30亿参数的强Swin-Transformer模型,并在几个具有代表性的视觉基准上实现了SOTA的精度。 3.5. Model configurations 作者为4种配置的Swin Transformer V2保持原始Swin Transformer的阶段、块和通道设置: C表示第一阶段中隐藏层的通道数。 作者进一步将Swin Transformer V2扩展到huge...
30亿参数的Swin Transformer v2.0,稳定性与准确性双提升 在进一步扩大模型容量的过程中,微软亚洲研究院的研究员们发现训练过程存在严重的不稳定性问题。如图2所示,随着原始 Swin Transformer 模型从小变大,网络深层的激活值会急剧增加,拥有2亿参数的 Swin-L 模型,其幅值最高和最低层之间的差异可以达到10^4。当进一...
Swin Transformer V2的核心是将模型扩展到更大的容量和分辨率,其中最大的模型SwinV2-G参数量达到了30亿,在物体检测任务上图像分辨率达到1536x1536,基于SwinV2-G的模型也在4个任务上达到了SOTA:在图像分类数据集ImageNet V2上达到了84.0%的top1准确度,在物体检测数据集COCO上达到了63.1/54.4的box/mask mAP,在语义...
下面介绍一下Swin Transformer的参数。 1. patch_size:表示一个patch的大小。在Swin Transformer中,输入图像会被分成若干个patch,每个patch会被看做一个序列,然后送入Transformer中进行处理。patch_size越大,每个序列中的元素个数就越少,模型的计算量也就越小。 2. embed_dim:表示每个patch被嵌入到Transformer中的...
Swin Transformer的基础架构示意图 Swin Transformer中最重要的模块是基于移动窗口构建的注意力模块,其内部结构如下图所示,包含了一个基于移动窗口的多头自注意力模块(shifted windows multi-head self attention, SW-MSA)和基于窗口的多头自注意力模块(W-MSA),其他的归一化层和两层的MLP与原来保持一致,并使用了GELU...
3)参数量大,计算复杂度高 对于第一个问题,DeiT提出了一种新的蒸馏方式,使得不需要额外的训练数据集就可以获取一个比较好的结果,而Swin Transformer提出的移动窗口与分层设计可以解决计算复杂度的问题与内存访问昂贵问题。 其中,复杂度由O ( N 2 ) 降低为O ( N ∗ n ) ...
那么,Swin Transformer的参数具体是什么呢? 首先是输入图片的大小和通道数。Swin Transformer的输入图片大小可以是任意大小,但在训练时需要将所有的图片resize到统一的尺寸。而通道数则是由输入图片的彩色通道数决定的,一般为3,即R、G、B三个通道。 接着是Swin Transformer的层数和每层的通道数。Swin Transformer的...
微软继Swin Transformer之后,于去年11月推出了Swin Transformer V2,其开源的模型和预训练代码展示了在视觉领域的巨大潜力。Swin V2的核心在于扩大模型容量和分辨率,SwinV2-G的最大参数量达到30亿,支持1536x1536的物体检测任务。在多项任务上,SwinV2-G表现出色,包括ImageNet V2的84.0% top1精度,...
继Swin Transformer之后,微软在去年11月份发布了Swin Transformer V2,提供了一个更大的模型容量和更高的分辨率解决方案。SwinV2-G模型参数量高达30亿,图像分辨率达到1536x1536。在多个任务上,基于SwinV2-G的模型达到了顶尖水平:在ImageNet V2上取得84.0%的top1准确度,在COCO数据集上的box/mask mAP...