RMSE最低,表示模型的预测性能最好,与实际观测值的接近程度最高。从7个特征中选出最优特征的前五个...
当特征为7个时,RMSE最低,表示模型的预测性能最好,与实际观测值的接近程度最高。
均方根误差RMSEP为: 0.39765 决定系数R^2为: 0.93392 剩余预测残差RPD为: 4.2631 平均绝对百分比误差MAPE为: 0.0032299 研究内容 基于SVM-RFE-BP的特征选择算法结合BP神经网络的多输入单输出回归预测是一种结合了支持向量机递归特征消除(SVM-RFE)和反向传播(BP)神经网络的方法。下面是算法的基本步骤: 数据准备:准备...
(-r|u-v|^2) 3 –sigmoid:tanh(r*u'v + coef0) 经过特征选择后,保留特征的序号为: 126 160 161 163 165 166 237 239 240 370 评价结果如下所示: 平均绝对误差MAE为:0.27933 均方误差MSE为: 0.15813 均方根误差RMSEP为: 0.39765 决定系数R^2为: 0.93392 剩余预测残差RPD为: 4.2631 平均绝对百分比...
基于支持向量机递归特征消除(SVM_RFE)的回归数据特征选择算法,matlab代码,输出为选择的特征序号。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。