gamma:核系数。对于非线性核函数,gamma可以影响模型的复杂度。较小的gamma会形成较大的决策边界,较大的gamma则会致使过拟合。 coef0:控制多项式核和Sigmoid核中常数项的影响。 class_weight:指定类别的权重,能够解决类别不平衡问题。 verbose:是否开启详细输出,默认值是False。 random_state:控制随机数生成的种子,确保...
gamma: 核函数的系数,适用于 ‘rbf’, ‘poly’, 和‘sigmoid’。 degree: 多项式核函数的度数。 以下是一个示例,展示如何设置这些参数: # 设置 SVC 的参数svc_model=SVC(C=1.0,kernel='rbf',gamma='auto')# 初始化 SVC 模型,设置参数 1. 2. 第六步:使用训练集训练模型 现在,我们可以使用训练集来训练...
1.函数简介sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False,Tol=0.001, cache_size200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None,random_state=None)参数:...
y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.6)# plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')# plt.show()# 训练一个基本的SVCfromsklearn.svmimportSVC
X_test_pca = pca.transform(X_test)# Train a SVM classification model# 建立SVM分类模型param_grid = {'C': [1e3,5e3,1e4,5e4,1e5],'gamma': [0.0001,0.0005,0.001,0.005,0.01,0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) ...
target, train_size=1000, test_size=None, random_state=42) estimator = SVC(probability=True, kernel='linear', random_state=42) estimator.fit(X_train, y_train) y_pred_1 = estimator.predict(X_test) y_pred_2 = estimator.predict_proba(X_test).argmax(axis=1) print("On {} test ...
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.svmimportLinearSVCfromsklearn.datasetsimportmake_blobs# 创建随机分布的,可以分离的400个样本点X,y=make_blobs(n_samples=400,centers=2,random_state=32)# 创建LinearSVC对象clf=LinearSVC(C=1000)clf.fit(X,y)plt.scatter(X[:,0],X[:,1],c=y,s=...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
svc.C=Csvc.gamma = gamma svc.degree = degree svc.random_state = rad_stat this_scores = cross_val_score(svc, train, trainlabel, scoring=method, cv=10, n_jobs=-1\ ) score_C.append(np.mean(this_scores))#score_C_this.append(np.mean(this_scores))print(np.mean(score_C) )print("...
from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 使用SVC算法进行训练 svc = SVC(kernel='rbf', gamma='scale', C=1.0, random_state=42) svc.fit(X_scaled, y) 4. 使用SVC算法对半环形moo...