C. Vlad and a Sum of Sum of Digits 分析 在给定的数据规模下,可以直接暴力计算出每个数的数位之和,求出前缀和后就可以在O(1)的时间复杂度下返回答案,因为数位拆分的时间复杂度为O(nlogn),所以总的时间复杂度为O(nlogn+t),其中t为查询次数。
这题是用贪心来做的,同样是m位数,前面的数字越大这个数就越大。 所以写一个can(int m, int s)函数,来判断是否存在一个m位数其各位数字之和为s 这里先不考虑前导0的事,代码看起来可能是这个样子的: boolcan(intm,ints) {return(s >=0&& s <= m*9); } 比如我们现在要求满足要求的最小整数,从最...
Let f(x)f(x) be the sum of digits of a decimal number xx. Find the smallest non-negative integer xx such that f(x)+f(x+1)+⋯+f(x+k)=nf(x)+f(x+1)+⋯+f(x+k)=n. The first line contains one integer tt (1≤t≤1501≤t≤150)— the number of test cases. Each test...
You are given a positive integer n. Let S(x) be sum of digits in base 10 representation of xx, for example, S(123)=1+2+3=6, S(0)=0. Your task is to find two integers a,ba,b, such that 0≤a,b≤n, a+b=n and S(a)+S(b) is the largest possible among all such pairs...
Let $S(x)$ be sum of digits in base 10 representation of $x$, for example, $S(123) = 1 + 2 + 3 = 6$, $S(0) = 0$. Your task is to find two integers $a, b$, such that $0 \leq a, b \leq n$, $a + b = n$ and $S(a) + S(b)$ is the largest possible am...
CodeForces 489C (贪心) Given Length and Sum of Digits...,题意:找出m位且各个数位数字之和为s的最大和最小整数,不包括前导0(比如说003是非法的),但0是可以的。分析:这题是用贪心来做的,同样是m位数,前面的数字越大这个数就越大。所以写一个can(intm,ints)函数,来
Codeforces Round #513 B. Maximum Sum of Digits(思维) 题目链接:http://codeforces.com/contest/1060/problem/B 题意是输入一个n,从1-n中找两个数,使得a+b=n,而且S(a)+S(b)的值是所有两个数中最大的。S函数求的是一个数每一位上的数字之和,比如S(123) = 1 + 2 + 3。
sequences, and I had no luck. I've also tried rewriting it in many ways, etc, but I had no luck. I'm guessing you can just stimulate the process, but I'm pretty sure it would be very expensive (especially for large numbers where you need to obtain the kth digit of the number)...
Repeated Digit Sum of A^B By Md_Naimur_Rahman, history, 2 years ago, Here's the problem from LightOJ. It says to calculate sod(n) [sum of digits of n] while n >= 10. Here n = a^b, (0<= a,b <= 10^50,000 and a+b>0 )...
1926C-VladAndASumOfSumOfDigits.cpp 1926D-VladAndDivision.cpp 1927A-MakeItWhite.cpp 1927B-FollowingTheString.cpp 1927C-ChooseTheDifferentOnes.cpp 1927D-FindTheDifferentOnes.cpp 1927E-KleverPermutation.cpp 1928A-RectangleCutting.cpp 1928B-Equalize.cpp 1929A-SashaAndTheBeautifulArray.cpp 1929B-Sasha...