publicintmaxSubArray(int[] A) {intn =A.length;int[] dp =newint[n];//dp[i] means the maximum subarray ending with A[i];dp[0] = A[0];intmax = dp[0];for(inti = 1; i < n; i++){ dp[i]= A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); max=Math.max(max, dp...
int max_cir = sum + maxSubArray(A); if(sum!=0&& max_cir == 0 ) return max_nor ; else if(max_cir> max_nor) return max_cir; else return max_nor; } private: int maxSubArray(vector<int>& A) { int ans = INT_MIN; int cur = INT_MIN; for (int k = 0; k <A.size(); ...
前面出现过的前缀和里找比它大一点的值,这里就想到了C++里的set,有序的集合,set.upper_bound二分查找,并插入前缀和,复杂度O(nlogn)。 code #include<bits/stdc++.h>usingnamespacestd;typedeflonglongll;constintMAXN =1e5+5; ll a[MAXN];intmain(){ ios::sync_with_stdio(0); cin.tie(0);intT, ...
Subarray with sum less than k 和乘法其实类似, 假设均为正数的话 int maxSubarrayLessThanK(vector<int>& nums, int k){ int ans=0; long long sum=0; for(int i=0, left=0; i<int(nums.size()); i++){ sum+=nums[i]; while(sum>=k) sum-=nums[left++]; ans=max(ans, i-left+1)...
[1,r−2]. Then you can find the minimum value ofpf[l−1]pf[l−1]for a givenrrinO(logn)O(logn)time, maybe using std::set or something, and update asans=max(ans,pf[r]−∗s.begin())ans=max(ans,pf[r]−∗s.begin()). When you are done withrr, addpf[r−1]pf...
we're essentially looking for at everyiis the largestjsuch that it's prefix sum is <= pref[i] — k (the largest j so that we can cut off as much of the array as possible). This problem can be solved with a segment tree that handles point updates and stores the max on a range...
The maximum sum subarray problem is to find a contiguous subarray with the largest sum. The history of algorithms to address this problem is recounted, culminating in what is known as Kadane’s algorithm. However, that algorithm is not the algorithm Kadane intended. Nonetheless, the algorithm kno...
Output:31Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3. 分析: https://xingxingpark.com/Leetcode-1031-Maximum-Sum-of-Two-Non-Overlapping-Subarrays/ 动态规划 凡是要求数组某一段的和,要想到用pre_sum,pre_sum[i]表示指数i之前左右数的和。 这...
Explanation: One choice of subarrays is [3,8,1] with length3, and [8,9] with length2. 1. 2. 3. Example 3: AI检测代码解析 Input: A=[2,1,5,6,0,9,5,0,3,8], L=4, M=3 Output:31 Explanation: One choice of subarrays is [5,6,0,9] with length4, and [3,8] with le...
count-subtrees-with-max-distance-between-cities.c count-the-number-of-consistent-strings.c count-the-repetitions.c count-triplets-that-can-form-two-arrays-of-equal-xor.c count-unhappy-friends.c count-vowels-permutation.c count-ways-to-make-array-with-product.c counting-bits.c c...