我们使用定时器更新事件触发DMA,通过DMA修改ARR的值来调节相邻两组转换之间的时间间隔。另外,ADC的转换结果通过EOC事件触发DMA,并由DMA将转换结果有序地搬到指定的内存空间。 整个ADC序列的5个通道转换完成后,进入ADC的DMA传输完成中断,在中断回调函数里对各个通道的转换结果进行处理。之后,又可以开始下一轮ADC转换。
我们使用定时器更新事件触发DMA,通过DMA修改ARR的值来调节相邻两组转换之间的时间间隔。另外,ADC的转换结果通过EOC事件触发DMA,并由DMA将转换结果有序地搬到指定的内存空间。 整个ADC序列的5个通道转换完成后,进入ADC的DMA传输完成中断,在中断回调函数里对各个通道的转换结果进行处理。之后,又可以开始下一轮ADC转换。
我每次在传输完成中断回调函数里做数据处理。相关处理代码如下图所示: TIMER不停触发ADC,DMA传输也是循环的,按理数据应该动态改变。即使变化不大,也不至于纹丝不动。【除AdcDataViaDMA [5]外,其它均为AD转换值。】 那是什么原因呢?目前我们是开启了Cache的。 现在数据的大致流程就是,ADC转换结果出来后,DMA将数...
初始化阶段,开启DMA传输: 传输完成之后产生一个中断: 这时候看数组里面的值: 4、连续转换+DMA+定时器+手动启动 方法4是在方法3的基础上稍微做了一些调整,主要面向的需求是:固定时间间隔的AD采样。比如说,每隔0.1秒,需要连续采样100次。 通常的做法是,使用定时器做一个定时中断,在定时中断里,调用函数: HAL_ADC...
HAL_ADC_ConfigChannel(&hadc, &sConfig); } ``` 接下来,我们需要配置一个定时器(TIM)和DMA模块来触发ADC的转换并接收转换结果。 以下是基本的TIM和DMA初始化函数以及处理DMA传输完成中断的回调函数: ```c TIM_HandleTypeDef htim; DMA_HandleTypeDef hdma; ...
在中断中进行处理,当AD转换次数达到1000次的时候,停止转换。 注意事项:函数HAL_ADC_Stop_IT(&hadc1) 需要在中断内调用,中断外调用不起作用。 3、连续转换+DMA+手动启动 在方法2的基础上,引入DMA这个东西。不得不说,DMA真的是很方便,省去了很多手动操作的麻烦。可以直接把指定数量的AD转换值存入数组里,可以单...
通常的做法是,使用定时器做一个定时中断,在定时中断里,调用函数: HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ad_value,1000); //启动,同时开启中断。 方法和原理都比较简单,这里就不细说了。 5、连续转换+DMA+定时器触发 方法5是对方法4里面的需求的实现过程进行了优化。STM32的定时器可以自动触发AD转换,省...
DMA_HandleTypeDef hdma_adc1; uint16_t adc_data[DATA_SIZE * 3]; // 保存采集到的数据 uint8_t current_channel = 0; // 当前采集的通道 //ADCDMA中断回调函数 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) if (current_channel == 3) //数据采集完成,进行数据处理操作 // 处理adc_...
5) 配置使能 ADC 转换完成中断,在中断内读取转换完数据; 6) 使能 ADC; 7) 使能软件触发 ADC 转换。 ADC 转换结果数据使用中断方式读取,这里没有使用 DMA 进行数据传输。 View Code 流程2--独立模式多通道 1) 初始化 ADC GPIO; 2) 初始化 ADC 工作参数; ...