华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于 LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在一个基准任务上表现优于 540B PaLM 模型。令人印象深刻的是,他们的...
华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于 LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在一个基准任务上表现优于 540B PaLM 模型。令人印象深刻的是,他们的...
大型语言模型能力惊人,但在部署过程中往往由于规模而消耗巨大的成本。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于 LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在...
但是很遗憾,这些范式在缩小模型规模的同时也付出了代价:为了达到与 LLM 相当的性能,微调需要昂贵的人类标签,而蒸馏需要大量很难获得的无标签数据。 在一篇题为「Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes」的论文中,来自华盛顿大学、谷歌的研究者...
大型语言模型能力惊人,但在部署过程中往往由于规模而消耗巨大的成本。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在一...
华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于 LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在一个基准任务上表现优于 540B PaLM 模型。令人印象深刻的是,他们...
Distilling-Step-by-Step,逐步蒸馏的方法,更好的利用大语言模型来训练我们自己的模型,从而在下游任务上取得更好的效果, 视频播放量 1406、弹幕量 0、点赞数 41、投硬币枚数 13、收藏人数 132、转发人数 13, 视频作者 不染742, 作者简介 懒惰,相关视频:langchain-chatgl
大型语言模型能力惊人,但在部署过程中往往由于规模而消耗巨大的成本。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。该方法在训练用于特定任务的小型模型方面优于 LLM,训练数据远少于传统的微调和蒸馏。他们的 770M T5 模型在...
谷歌开源 AI 微调方法: Distilling Step-by-Step 作者| Anthony Alford 译者| 王强 策划| 丁晓昀 华盛顿大学和谷歌研究中心的一个团队最近开源了 Distilling Step-by-Step(逐步蒸馏),一种用于微调规模较小的语言模型的技术。与标准微调相比,逐步蒸馏需要的训练数据更少,并且生成的模型更小,但模型性能却优于参数...
Haploview使用方法图解(Step-By-Step).pdf,用搜狗浏览器下载下来的文件打不开, 必须换 IE 浏览器打开网页再 下载数据! 我觉得 Haploview 最好的课件就是在他的官网,里面有一个“ User Manual ”: 实验三、 Browsers and Tools for Genetic Variants Analysis 4 学时 基