在上述示例中,std::unique_lock<std::mutex> 对象lock 用于锁定互斥量 mutex,以保护对 sharedVariable 共享变量的访问。increment 函数在互斥访问的范围内对 sharedVariable 进行递增操作。两个线程通过调用 increment 函数并发地修改共享变量,但由于互斥量的保护,保证了线程安全性。 请注意,与 std::lock_guard 相比...
1 回顾采用RAII手法管理mutex的std::lock_guard其功能是在对象构造时将mutex加锁,析构时对mutex解锁,这样一个栈对象保证了在异常情形下mutex可以在lock_guard对象析构被解锁,lock_guard拥有mutex的所有权。 1explicitlock_guard (mutex_type& m);//必须要传递一个mutex作为构造参数2lock_guard (mutex_type& m, ...
std::unique_lock也可以提供自动加锁、解锁功能,比std::lock_guard更加灵活 #include <QCoreApplication> #include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex, std::lock_guard #include <stdexcept> // std::logic_error std::mutex mtx; void print...
lock_guard(constlock_guard &) =delete; lock_guard&operator=(constlock_guard &) =delete;private: mutex_type&_M_device; }; std::unique_lock std::unique_lock同样能够实现自动解锁的功能,但比std::lock_guard提供了更多的成员方法,更加灵活一点,相对来说占用空也间更大并且相对较慢,即需要付出更多的...
std::lock_guard<std::mutex> lockGuard(m); sharedVariable= getVar(); } 1. 2. 3. 4. 5. 这很容易。但是开括号 { 和闭括号 }是啥? 为了保证std::lock_guard生命周期只在这{}里面有效。 也就是说,当生命周期离开临界区时,它的生命周期就结束了。
std::mutex mut; void insert_data() { std::lock_guard<std::mutex> lk(mut); queue.push_back(data); } void process_data() { std::unqiue_lock<std::mutex> lk(mut); queue.pop(); } 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. ...
std::unqiue_lock<std::mutex> lk(mut); queue.pop(); } ``` std::unique_lock 与std::lock_guard都能实现自动加锁与解锁功能,但是std::unique_lock要比std::lock_guard更灵活,但是更灵活的代价是占用空间相对更大一点且相对更慢一点。 通过实现一个线程安全的队列来说明两者之间的差别。
针对以上的问题,C++11中引入了std::unique_lock与std::lock_guard两种数据结构。通过对lock和unlock进行一次薄的封装,实现自动unlock的功能。 std::mutex mut; void insert_data() { std::lock_guard<std::mutex> lk(mut); queue.push_back(data); ...
std::unique_lock是C++标准库中的一个类,用于管理互斥量(mutex)的锁定和解锁操作。 概念: std::unique_lock是一个通用的互斥量封装类,它提供了更灵活的锁定和解锁操作。它可以用于锁定互斥量,也可以用于延迟锁定、递归锁定等特殊情况。 分类: std::unique_lock属于互斥量的锁定机制,与之相对的还有std::lock...
lock(); std::unique_lock<std::mutex> lck(mtx, std::adopt_lock); // 这里 std::cout << num << " is even." << std::endl; // lck 在这个作用域结束时自动解锁 mtx } } void printOdd(int num) { if (num % 2 != 0) { mtx.lock(); std::lock_guard<std::mutex> lck(mtx, ...