To create a new variablenewidfrom the existing variableoldid, whetheroldidis string or numeric, type . egen newid = group(oldid) The new variablenewidwill contain 1 for the first value ofoldid, 2 for the second value, and so on. ...
The Variables Manager is a tool for managing properties of variables both individually and in groups.It can be used to create variable and value labels,rename variables,change display formats, and manage notes.It has the ability tofilter and group variables as well as to create variable lists...
The problem is to create a variableownchildgiving the number of each person’s own children living in the family. Thus in family 1, both parents have three children living with them, whereas in family 2, both the grandmother and her daughter have one child each living with them. ...
Data—Createorchangevariables—Createnewvariable 基本命令 Stata有四个基本的生成和修改变量的命令:gen、egen、replace和recode•.gen和egen分别是generate和extendedgenerate的缩写,它们用于生成新变量•.replace和recode用来改变现存变量的属性或数值•.replace需要与gen一起使用;二者的区别在于,gen用于生成新变量,...
如果读入excel数 据,则以字符型变量输入日期,并重新格式日期 生成变量的路径 data create or change variables 生成变量的窗口 data create or change variables create new variable 基本命令 stata有四个基本的生成和修改变量的命令:gen、egen、 replace和recode . gen和egen分别是generate和extended generate的缩写,...
*Create a dummy variable to identify the group exposed to the treatment. In this example lets assumed that countries with code 5,6, and 7 were treated (=1). Countries 1-4 were not treated (=0). If you already have this skip this step生成地区的虚拟变量 ...
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
#create `exper` squared variable wage1$wage_avg <- mean(wage1$wage) #create average wage variable wage1$tenursq <- NULL #drop `tenursq` wage1 <- wage1[ , c(“wage”, “educ”,“exper”, “nonwhite”)] # keep selected variables ...
wage1$exper2 <- wage1$exper^2 #create `exper` squared variable wage1$wage_avg <- mean(wage1$wage) #create average wage variable wage1$tenursq <- NULL #drop `tenursq` wage1 <- wage1[ , c(“wage”, “educ”,“exper”, “nonwhite”)] # keep selected variables wage1 <-fastDumm...
melt(dat, measure=patterns('_delay'), variable='d_type') reshape wide* This starts with the reshaped-long data from above reshape wide delay_, i(id) j(delay_type) s 合并导入和准备辅助数据集import delimited using"https://vincentarelbundock.github.io/Rdatasets/csv/nycflights13/airports.cs...