2. 输入有空白的情形。 //stack appliation ---expression convertion from infix to postfix#include <stdio.h>#include<stdlib.h>//include exit(),malloc() function。#include <string.h>//include strlen function#include <ctype.h>#defineEMTPTYSTACK -1//define the empty stack arry subcript, so ...
一般的算术表达式顺序为Infix Expression,如下表所示,这种形式便于人类理解其执行顺序,但对于电脑,Prefix Expression 和 Postfix Expression 两种形式的表达式更容易理解。需要一个算法程序来完成Infix Expression 到 Prefix Expression 和 Postfix Expression的转换。 Infix Expression 到 Postfix Expression的转换过程: 1,新建...
Example of Infix to Postfix Conversion Let's take an example to better understand the algorithm Infix Expression:A+(B*C-(D/E^F)*G)*H, where^is an exponential operator. Step by step output for infix to postfix conversion Input StringOutput StackOperator Stack ...
#coding:utf-8frompythonds.basic.stackimportStackfromstringimport*definfixToPostfix(infixexpr):# 这里创建一个字典是为了后面 优先级 的比较prec={}prec["*"]=3prec["/"]=3prec["+"]=2prec["-"]=2prec["("]=1# 实例化opstack=Stack()postfixList=[]# 把输入的字符串分割开tokenList=infixexpr....
append(opStack.pop()) opStack.push(token) while not opStack.isEmpty(): postfixList.append(opStack.pop()) return " ".join(postfixList) # 合成后缀表达式字符串 a = '( A + B ) * C' # 输入字符必须用空格分开,不然无法split print(infixToPostfix(a)) ...
We have given an Arithmetic Expression and we have to write a program that converts the infix to postfix using stack in C. The Expression will be given in the form of a string, where alphabetic characters i.e a-z or A-Z denotes operands and operators are ( +, –, *, / ). Expres...
())and(indexToken[opStack.peek()]>=indexToken[token]):expList.append(opStack.pop())opStack.push(token)whilenotopStack.is_empty():expList.append(opStack.pop())return"".join(expList)print(infixToPostfix("3+2*5"))print(infixToPostfix("(3+2)*5"))print(infixToPostfix("(3+2*5)*...
print postfixEval('6 5 + 4 *') 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Infix Expression 到 Prefix Expression:将Infix Expression 翻转,左右括号互换,然后按infixtopostfix转换,最后再进行翻转?
push(infixEle) elif infixEle == ")": print "pop operator until see (" topOper = operatorStack.pop() while topOper != "(": print "pop %s until see (" % topOper postfixString.append(topOper) topOper = operatorStack.pop() else: while (not operatorStack.isEmpty()) and (order[...
public class InfixToPostfix { private String infixExp = null; private List<String> postfixExp = new ArrayList<String>(); private Stack<Character> operStack = new Stack<Character>(); private StringBuffer numBuf = new StringBuffer();